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Introduction    Diffusion tractography has rapidly become a prominent MRI technique, one that is used as a neurosciences research 
tool and offers promise as an aid to clinical decision making in neurosurgery. Routine clinical use will, however, depend on a refinement 
of existing algorithms in order to improve performance in terms of false positives and false negatives (failure to locate established 
pathways). 
 

A common feature of the tractography algorithms used to date is the independent voxel-by-voxel approach that is adopted. Random 
effect (RE) models are a category of regression model in which one, or more, of the regression coefficients captures the fundamentally 
random behaviour of a cluster of units under consideration (voxels in the present analysis). They provide a formal approach to 
combining the information provided by a cluster of units and, in general, provide better estimates than those  typically obtained by 
multiple single unit analyses. This abstract provides evidence to show that spatial random effects modelling (based on a Markov 
random field treatment) provides improved probabilistic information on crossing fibre voxels. The analyses were performed using 
Markov chain Monte Carlo (MCMC) simulation, as described elsewhere1.  

Methods   Diffusion-weighted images were acquired using a b-value of 1000 s mm-2 and 20 directions, with two averages. Spatial 
random effect analyses were performed using a full measurement model that incorporates the ‘mixture model’ outlined by Behrens et 
al.2 The main feature of the model is the rotation matrix which relates white matter orientation to the coordinate system defined by the 

magnetic field gradients. The spherical coordinates and b0 
signal intensity were assigned spatial (intrinsic Gaussian 
conditional autoregressive) priors, while the remaining 
parameters were assigned uninformative exchangeable 
prior distributions, except for the imposition of various 
physical constraints. Gibbs sampling was performed using 
WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs), together 
with the spatial prior provided by the car.normal function in 
the GeoBUGS addon to WinBUGS. Programs were written 
using the WinBUGS development interface3. Various 
convergence tests were performed using an R 
implementation of CODA (http://www.mrc-bsu.cam.ac.uk/ 
bugs). 
 

Results   The figure compares the results obtained with the 
spatial random effects model and those generated under 
the independent voxels treatment using data taken from the 
pons of a single subject. The location of the selected 3 by 8 
region-of-interest is shown in the accompanying FA map. 
The results are displayed in the form of an array of vector 
cluster plots obtained by resampling the MCMC output, 
using 100 samples taken from the spherical coordinate 
posterior distribution for each component scaled by their 
respective volume fractions. In general, the spatial model 
yields tighter, better resolved components than the 
independent voxels analysis. In some voxels the spatial 
treatment appears to reveal additional structure. 

 
Discussion and Conclusion   This work is a continuation of a previous investigation into an MCMC 
RE modelling of crossing fibre MR diffusion data4. Previously we compared a number of models, 
including a spatial and exchangeable RE model. Here we focus on the spatial treatment. The results 
indicate that the intrinsic Gaussian conditional autoregressive prior performs particularly well, 
especially when applied to small collections of voxels, as shown here for a 3 by 8 region-of-interest. 
Our experience to date indicates that modelling larger regions, e.g., 10 by 10, leads to poorer 
resolution. This is not entirely unexpected because the spatial prior, despite being adaptive (the 
precision parameter is assigned a distribution), is spatially invariant. Consequently, the spatial prior 
must be compromised when dealing with a large area that is heterogeneous in structure. The results 
presented here indicate that the spatial RE model can be applied to a region in which neighbouring 
voxels differ markedly in structure, and that the underlying spatial heterogeneity in orientation is 
maintained. 
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