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INTRODUCTION: Diffusion tensor imaging (DTI) is capable of non-invasively measuring water diffusion in vivo. While DTI has been widely em
delineate potential white matter abnormality in different neurological diseases, registration of diffusion tensor images across different subjects i
prerequisite for detailed statistical analysis on voxel-by-voxel basis. However, spatial normalization of diffusion tensor images is challen
technically and computationally given that tensor data representation is high dimensional in nature, and thus it requires not only to spatially
also to appropriately reorient the tensor at each voxel. Conventional DTI registration methods generally extract tensor scalar features from ea
as such to construct scalar maps. Subsequently, regional integration and other operations such as edge detection can be performed to ex
features to guide the registration. There are, however, two major limitations with these approaches. First, the computed regional features
reflect the actual regional tensor distributions. Second, by the same token, gradient maps calculated from the tensor-derived scalar feature m
not represent the actual tissue tensor boundaries. To overcome the two major limitations associated with the currently available approach
approach is proposed by performing regional computation and edge detection directly on the tensors. Regional tensor distribution information
mean and variance, is computed in a multiscale fashion directly from the tensors by taking into account voxel neighborhood of different sizes, a
capturing tensor information at different scales, which in turn can be used to hierarchically guide the registration. Such multiscale scheme
alleviate the problems of trapping in a local minimum. Regional information is also more robust to noise since one can better determine the
properties of each tensor by taking into account the properties of its surrounding, mitigating the effect of noise. Also incorporated in our metho
information extracted directly from tensors, which is crucial to facilitate registration of tissue boundaries. Detailed descriptions of this new app
provided below.  
METHOD AND RESULTS: Tensor Regional Distributions: For each voxel in diffusion tensor images, multi-scale regional tensor distribution in
was extracted from its multi-scale neighborhoods. Specifically, for a given tensor D(x, y, z), the 
regional tensor distribution information was extracted from its neighborhood {D(u, v,w)|(u, v, w) 
N(x, y, z)}. By varying the size of N(x, y, z) or by scaling the image itself, a rich set of multi-scale 
tensor regional distribution information could be obtained and employed to drive the registration 
hierarchically. To avoid tensor computation in a curved space, we took the matrix logarithm of all 
the original tensors, i.e., log(D(x, y, z)), for all (x, y, z). The tensor regional mean and variance for 
each voxel were then computed in the log-space. Tensor Edges: To better extract tissue 
boundaries, we extended Canny edge detector to work directly on diffusion tensor images instead 

of their scalar maps. Canny edge detector can be used to 
extract image gradient boundaries, and is robust to noise 
due to the employment of Gaussian filter to smooth out 
the noise prior to edge detection. For fast edge detection, 
3D Gaussian-based image filtering was implemented 
using three subsequent steps of 1D Gaussian filtering 
along the x, y, and z directions independently. This was 
then followed by gradient map computation and non-
maximum suppression in the 3D space. Note that edge detection was performed in the log-space. Hie
Deformable Registration: For each voxel, features obtained above were grouped into an attribute v
shown in Fig. 1, these attribute vectors are rich enough to permit discrimination of different brain a
structures. For computation efficiency, a subset of voxels with distinctive attribute vectors was selec

set of driving voxels, providing temporary landmarks for correspondence matching. The initial driving voxels were employed to obtain a mo
starting registration, facilitating relatively less distinctive driving voxels during later stages of the registration. The brain volume was deformed
linear hierarchical fashion similar to that in [1].  Simulated Deformation Fields: We generated 20 simulated deformation fields, which serv
ground truth, using the statistical model of deformation (SMD) proposed in 
[2]. Using a set of brain images as the template, 20 simulated brain images 
can be constructed, which were then registered back onto the template 

using the proposed method. Registration 
accuracy can then be evaluated by 
comparing the deformation fields with the 
ground truth. The average Euclidean 
distance deformation field error given by the 
proposed method is 0.67 voxel (std: 0.43), 
indicating a subvoxel registration accuracy. 
In comparison, Yang et al.’s method which 
was tested using a similar dataset [3], 
reported a mean error of 0.86 voxel; the proposed method yields more than 20% improvement. Fiber Trac
Using FACT [4], fiber bundles passing through two ROIs (see Fig. 2) were tracked, extracted, and com
quantifying registration accuracy in these specific regions. Using a measure similar to that referred to as the m
closest distances in [5], errors given by the proposed method are 0.62mm and 0.77mm (stds: 0.16 & 0.07) for
and splenium fibers, respectively. The rather small errors with our approach signify good registration accuracy
Simulation: We introduced atrophy on the simulated brains, by modifying the tensors in the selected region to
isotropic (Fig. 3). After registering them onto the template, we tested whether the atrophic region was still detect

paired t-test. The results are shown in Fig. 3. The average t values for affine registration and our method are 4.26 and 9.91, respectively. Rea
brain images of real subjects were registered onto a randomly selected template and an average image was generated from the registered im
FA edge map of the average image, superimposed on the FA map of the template image (Fig. 4), indicates good consistency between their FA
REFERENCES: [1] D. Shen et al.,  IEEE TMI, 21(11), 1421–1439, 2002. [2] Z. Xue et al., Neuroimage, 33(3), 855–866, 2006. [3] J. Yang et al., 
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Fig. 4 FA edge map of the 
group-averaged tensor 
image superimposed on 
template FA map. 

 
(a) Point of interest (b) Similarity Ma

Fig. 1 Distinctiveness of attribute vec
attribute vector of the point of interest
compared with other points in the imag
The similarity map for the region inside 
box is magnified and shown in (b). 

  

Fig. 2 Fiber bundles in genu (left) 
and splenium (right). 

 
(a) Atrophic Region 

 
(b) Affine (c) Proposed 

Fig. 3 Paired t-test between control and atrophic brain images. 
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