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INTRODUCTION: Diffusion tensor imaging (DTI) is capable of non-invasively measuring water diffusion in vivo. While DTl has been widely employed to
delineate potential white matter abnormality in different neurological diseases, registration of diffusion tensor images across different subjects is a critical
prerequisite for detailed statistical analysis on voxel-by-voxel basis. However, spatial normalization of diffusion tensor images is challenging both
technically and computationally given that tensor data representation is high dimensional in nature, and thus it requires not only to spatially warp, but
also to appropriately reorient the tensor at each voxel. Conventional DTI registration methods generally extract tensor scalar features from each tensor
as such to construct scalar maps. Subsequently, regional integration and other operations such as edge detection can be performed to extract more
features to guide the registration. There are, however, two major limitations with these approaches. First, the computed regional features might not
reflect the actual regional tensor distributions. Second, by the same token, gradient maps calculated from the tensor-derived scalar feature maps might
not represent the actual tissue tensor boundaries. To overcome the two major limitations associated with the currently available approaches, a new
approach is proposed by performing regional computation and edge detection directly on the tensors. Regional tensor distribution information, such as
mean and variance, is computed in a multiscale fashion directly from the tensors by taking into account voxel neighborhood of different sizes, and hence
capturing tensor information at different scales, which in turn can be used to hierarchically guide the registration. Such multiscale scheme can help

Fig. 2 Fiber bundles in genu (left)
and splenium (right).

(a) Atrophic Region (b) Affine (c) Proposed

Fig. 3 Paired t-test between control and atrophic brain images.

alleviate the problems of trapping in a local minimum. Regional information is also more robust to noise since one can better determine the statistical
properties of each tensor by taking into account the properties of its surrounding, mitigating the effect of noise. Also incorporated in our method is edge
information extracted directly from tensors, which is crucial to facilitate registration of tissue boundaries. Detailed descriptions of this new approach are
provided below.
METHOD AND RESULTS: Tensor Regional Distributions: For each voxel in diffusion tensor images, multi-scale regional tensor distribution information
was extracted from its multi-scale neighborhoods. Specifically, for a given tensor D(x, Yy, z), the
regional tensor distribution information was extracted from its neighborhood {D(u, v,w)|(u, v, w) ¢ !
N(x, y, 2)}. By varying the size of N(x, y, z) or by scaling the image itself, a rich set of multi-scale
tensor regional distribution information could be obtained and employed to drive the registration
hierarchically. To avoid tensor computation in a curved space, we took the matrix logarithm of all
the original tensors, i.e., log(D(x, y, z)), for all (x, y, z). The tensor regional mean and variance for
each voxel were then computed in the log-space. Tensor Edges: To better extract tissue
boundaries, we extended Canny edge detector to work directly on diffusion tensor images instead
of their scalar maps. Canny edge detector can be used to ; o 0
extract image gradient boundaries, and is robust to noise (a) Point of interest  (b) Similarity Map
due to the employment of Gaussian filter to smooth out Fig. 1 Distinctiveness of attribute vectors. The
the noise prior to edge detection. For fast edge detection, |auribute vector of the point of interest in (a) is
3D Gaussian-based image filtering was implemented |compared with other points in the image volume.
using three subsequent steps of 1D Gaussian filtering |1he similarity map for the region inside the green
along the x, y, and z directions independently. This was |poxis magnified and shown in (b).
then followed by gradient map computation and non-
maximum suppression in the 3D space. Note that edge detection was performed in the log-space. Hierarchical
Deformable Registration: For each voxel, features obtained above were grouped into an attribute vector. As
shown in Fig. 1, these attribute vectors are rich enough to permit discrimination of different brain anatomical
structures. For computation efficiency, a subset of voxels with distinctive attribute vectors was selected as the
set of driving voxels, providing temporary landmarks for correspondence matching. The initial driving voxels were employed to obtain a more reliable
starting registration, facilitating relatively less distinctive driving voxels during later stages of the registration. The brain volume was deformed in a non-
linear hierarchical fashion similar to that in [1]. Simulated Deformation Fields: We generated 20 simulated deformation fields, which served as the
ground truth, using the statistical model of deformation (SMD) proposed in
[2]. Using a set of brain images as the template, 20 simulated brain images
can be constructed, which were then registered back onto the template
using the proposed method. Registration
accuracy can then be evaluated by
comparing the deformation fields with the
ground truth. The average Euclidean
distance deformation field error given by the
proposed method is 0.67 voxel (std: 0.43),
indicating a subvoxel registration accuracy.
In comparison, Yang et al.'s method which
was tested using a similar dataset [3],
reported a mean error of 0.86 voxel; the proposed method yields more than 20% improvement. Fiber Tractography:
Using FACT [4], fiber bundles passing through two ROIls (see Fig. 2) were tracked, extracted, and compared for
Fig. 4 FA edge map of the] quantifying registration accuracy in these specific regions. Using a measure similar to that referred to as the mean of the
group-averaged tensor| closest distances in [5], errors given by the proposed method are 0.62mm and 0.77mm (stds: 0.16 & 0.07) for the genu
image superimposed on| and splenium fibers, respectively. The rather small errors with our approach signify good registration accuracy. Atrophy
template FA map. Simulation: We introduced atrophy on the simulated brains, by modifying the tensors in the selected region to be more
isotropic (Fig. 3). After registering them onto the template, we tested whether the atrophic region was still detectable using
paired t-test. The results are shown in Fig. 3. The average t values for affine registration and our method are 4.26 and 9.91, respectively. Real Data: 21
brain images of real subjects were registered onto a randomly selected template and an average image was generated from the registered images. The
FA edge map of the average image, superimposed on the FA map of the template image (Fig. 4), indicates good consistency between their FA maps.
REFERENCES: [1] D. Shen et al., IEEE TMI, 21(11), 1421-1439, 2002. [2] Z. Xue et al., Neuroimage, 33(3), 855-866, 2006. [3] J. Yang et al., SPIE Med.
Imaging’08, 2008. [4] S. Mori et al., A. Neurology, 47(2), 265-269, 1999. [5] G. Gerig et al., IEEE EMBS, 44214424, 2004.

Proc. Intl. Soc. Mag. Reson. Med. 17 (2009) 1426



