
Figure 1. Intermediate processing steps 

Figure 2. Cardiac artefacts in grey matter voxels. Fractional anisotropy (FA) 
estimates (top row) and corresponding artefact detection scores (bottom row) for 
different artefact magnitude (left) and frequency (right). Note the overall small 
performance drop of GMM and LRESTORE, which is due to the early hyperbolic 
decay of the weighting function, resulting in non-zero false-positive detection 
percentages (lower panels). The small performance drop for intermediate artefact 
magnitudes can be attributed to true-positive scores that have not yet reached 
100%. Akin results were found for white matter voxels, MD and PDD (not shown). 
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Introduction 
Diffusion weighted (DW) images are highly sensitive for bulk motion artefacts. Methods for compensating these artefacts during acquisition have been suggested, but 
are generally not very robust and/or time-efficient. Alternatively, the artefacts can be taken into account during post-processing, but this field is poorly explored. Two 
methods, GMM1 and RESTORE2, have estimated the diffusion tensor model using robust estimation techniques that assign low weights to outliers (artefacts). This 
study improves the accuracy, sensitivity and robustness of the approach by targeting the most common artefacts, namely head and cardiac motion artefacts, and using 
their spatio-temporal structure. The method is named Patching ArTefacts from Cardiac and Head motion (PATCH) and is tested with simulated and acquired DW data. 

PATCH algorithm 
Ordinary least squares (OLS) regression is commonly used to compute the diffusion tensor3 and minimizes the sum 
of squared residuals εi

2 in: y = Xβ + ε, with y the logarithmic DW data, X the diffusion gradient directions and β the 
diffusion tensor coefficients. It is, however, very sensitive to non-Gaussian outliers. Weighted least squares (WLS) 
regression is more robust against such outliers and minimizes the sum of squared weighted residuals (ωiεi)

2 in: Ωy = 
ΩXβ + Ωε, with Ω the diagonal matrix of the weights ωi. Previous studies1,2 used weights that hyperbolically decay 
with the size of the residuals: ωi = (εi

2 + C2)-1/2 with C a robust estimate of the standard deviation (SD): C = 
1.4826×median{|εi |}. The PATCH method introduced here uses linear WLS regression but with some important 
modifications. The prime change is that ωi is split into three factors: ωi = ω1i ω2i ω3i, where ω1 weights the cardiac 
effect, ω2 the head motion effect and ω3 the normal distribution distortion that results from taking the logarithm3. 
ω1 The weights ω1 decay exponentially with the size of the residuals: ω1i = exp(-[0.3εi /C1]

2). Simulations show that 
this gives more robust and accurate results (not shown). Further, ω1 is spatially processed to take the patchy 
structure of cardiac artefacts into account (Fig. 1). First, C1 is mildly smoothed to reduce noise. Then, ω1i is 
computed and processed with a 2D image closure operation (disc-shaped kernel with 12.5mm diagonal), which 
very effectively removes noise and which is equivalent to low-pass filtering in morphological space. 

ω2 Head motion artefacts have a slicewise structure and are accounted for by the residual weighting function ω2j = 
exp(-[0.1Ei /C2]

2), where Ei = Σikεik /√n, n the number of in-plane brain voxels (k) and C2 = 1.4826×median{|Ei |}. The computation of Ei is equivalent to estimation 
of the mean residual over the acquisition plane and correcting for the reliability of this estimate (NB not all slices have the same number of brain voxels). 

ω3 The logarithmic deformation of the data is corrected according to3: ω3 = Si/σi, with Si being the image intensity and σi the estimated noise. 
Outliers were defined (detected) by εi > 3 SD (RESTORE) or by ω1i and/or ω2i < 0.5 (PATCH). Here, the final step consisted of OLS estimation with discarded outliers. 

DWI test data 
Synthetic DWI datasets were created using Monte Carlo simulations (n=100) of 100×50×5 imaging volumes. Half of the volume had voxels with an isotropic (grey 
matter) diffusion tensor and the other half voxels with an anisotropic (white matter) tensor (λ1=5λ2=5λ3; MD=7⋅10-4 mm2/s). Multiplicative noise was added to small 
circular patches (diameter 7 voxels) or entire slices to simulate cardiac and head motion artefacts, respectively. The magnitude of this noise was varied from 0–0.5, and 
the incidence frequency from 0–50%. Thermal acquisition (Rician) noise was also added, such that unweighted images had a realistic SNR=25. The DW sampling 
scheme consisted of 30 uniformly oriented DW acquisitions with b=1000 s/mm² and 5 unweighted acquisitions. Furthermore, a representative DWI data set was taken 
from a typical 1.5T clinical MR study (TRSE-EPI sequence; TR 10100 ms, TE 93 ms, 2.5x2.5x2.5 mm, 30 uniform DWI with b=900 s/mm², 4 unweighted images). 

Results 
Simulated DWI data were analyzed using OLS, GMM, LRESTORE (a linear 
RESTORE implementation) and PATCH for various artefact magnitudes at 13% 
incidence frequency. The results (Fig. 2, left) for the artefact-free condition are 
all close to true value. For larger magnitudes, OLS results rapidly deteriorate and 
GMM, LRESTORE and PATCH remain very robust, but with PATCH always 
closest to truth. Furthermore, PATCH is most robust for increasing incidence 
frequency (Fig. 2, right; magnitude 0.4). In sum, the PATCH algorithm assigns 
more consistent and appropriate weightings, as indicated by its better (steeply 
rising) true-positive and near perfect (zero) false-positive outlier detection scores. 
 The benefits of PATCH become even more apparent for head motion artefacts, 
as these artefacts are simply more extended (slice vs patch) and hence provide 
more statistical power. Indeed, for all magnitudes, the artefacts are perfectly 
detected and the tensor estimates optimal, while for increasing incidence 
frequency the estimates are similarly robust as for cardiac artefacts (not shown). 

Discussion 
Simulations of cardiac and head motion artefacts have clearly demonstrated the 
benefit of the PATCH method in using the spatial structure of the artefacts. The 
method is more robust and accurate than previous methods and, moreover, 
improves results significantly using real DWI data (not shown) – particularly for 
motion-prone clinical patients. Finally, it should be noted that the accurate 
PATCH weights can well be used for subsequent processing (e.g. to discard data), 
such as higher-order diffusion modelling (in which outliers are harder to detect). 
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