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Introduction

Diffusion weighted (DW) images are highly sensitive for bulk motion artefacts. Methods for compensating these artefacts during acquisition have been suggested, but
are generally not very robust and/or time-efficient. Alternatively, the artefacts can be taken into account during post-processing, but this field is poorly explored. Two
methods, GMM' and RESTORE?, have estimated the diffusion tensor model using robust estimation techniques that assign low weights to outliers (artefacts). This
study improves the accuracy, sensitivity and robustness of the approach by targeting the most common artefacts, namely head and cardiac motion artefacts, and using
their spatio-temporal structure. The method is named Patching ArTefacts from Cardiac and Head motion (PATCH) and is tested with simulated and acquired DW data.

PATCH algorithm DWI Raw C Smoothed C
Ordinary least squares (OLS) regression is commonly used to compute the diffusion tensor’ and minimizes the sum
of squared residuals & in: y = XB + €, with y the logarithmic DW data, X the diffusion gradient directions and P the
diffusion tensor coefficients. It is, however, very sensitive to non-Gaussian outliers. Weighted least squares (WLS)
regression is more robust against such outliers and minimizes the sum of squared weighted residuals (ag)* in: Qy =
QXB + Qe, with Q the diagonal matrix of the weights a. Previous studies' used weights that hyperbolically decay
with the size of the residuals: @ = (¢ + C*)? with C a robust estimate of the standard deviation (SD): C =
1.4826xmedian{|g; |}. The PATCH method introduced here uses linear WLS regression but with some important
modifications. The prime change is that oy is split into three factors: o = oy; 0 03, where ®; weights the cardiac
effect, @, the head motion effect and w; the normal distribution distortion that results from taking the logarithm’.

®; The weights , decay exponentially with the size of the residuals: oy; = exp(-[0.3¢; /CI]Z). Simulations show that
this gives more robust and accurate results (not shown). Further, o is spatially processed to take the patchy
structure of cardiac artefacts into account (Fig. 1). First, C, is mildly smoothed to reduce noise. Then, wy; is
computed and processed with a 2D image closure operation (disc-shaped kernel with 12.5mm diagonal), which Residuals ¢, Raw o, Closed o,
very effectively removes noise and which is equivalent to low-pass filtering in morphological space.

@, Head motion artefacts have a slicewise structure and are accounted for by the residual weighting function w; =
exp(-[0.1E /Cz]z), where E; = € N n, n the number of in-plane brain voxels (k) and C, = 1.4826xmedian{|E; |}. The computation of E; is equivalent to estimation
of the mean residual over the acquisition plane and correcting for the reliability of this estimate (NB not all slices have the same number of brain voxels).

@; The logarithmic deformation of the data is corrected according to*: s = S/c;, with S being the image intensity and o; the estimated noise.

Outliers were defined (detected) by € >3 SD (RESTORE) or by ®;; and/or o,; < 0.5 (PATCH). Here, the final step consisted of OLS estimation with discarded outliers.

DWI test data

Synthetic DWI datasets were created using Monte Carlo simulations (n=100) of 100x50x5 imaging volumes. Half of the volume had voxels with an isotropic (grey
matter) diffusion tensor and the other half voxels with an anisotropic (white matter) tensor (A=5k=5k3;; MD=7- 10 mm?/s). Multiplicative noise was added to small
circular patches (diameter 7 voxels) or entire slices to simulate cardiac and head motion artefacts, respectively. The magnitude of this noise was varied from 0-0.5, and
the incidence frequency from 0-50%. Thermal acquisition (Rician) noise was also added, such that unweighted images had a realistic SNR=25. The DW sampling
scheme consisted of 30 uniformly oriented DW acquisitions with b=1000 s/mm? and 5 unweighted acquisitions. Furthermore, a representative DWI data set was taken
from a typical 1.5T clinical MR study (TRSE-EPI sequence; TR 10100 ms, TE 93 ms, 2.5x2.5x2.5 mm, 30 uniform DWI with b=900 s/mm?, 4 unweighted images).

Figure 1. Intermediate processing steps

Results
Simulated DWI data were analyzed using OLS, GMM, LRESTORE (a linear 0.25F —+— OLS
RESTORE implementation) and PATCH for various artefact magnitudes at 13% Lo cum
. . . .. —{— LRESTORE
incidence frequency. The results (Fig. 2, left) for the artefact-free condition are 02l —o— patcH
all close to true value. For larger magnitudes, OLS results rapidly deteriorate and
GMM, LRESTORE and PATCH remain very robust, but with PATCH always £
closest to truth. Furthermore, PATCH is most robust for increasing incidence
frequency (Fig. 2, right; magnitude 0.4). In sum, the PATCH algorithm assigns _
more consistent and appropriate weightings, as indicated by its better (steeply 0.1 @j [
rising) true-positive and near perfect (zero) false-positive outlier detection scores. . . . . . . . . . . . .
The benefits of PATCH become even more apparent for head motion artefacts, 100
as these artefacts are simply more extended (slice vs patch) and hence provide
more statistical power. Indeed, for all magnitudes, the artefacts are perfectly
detected and the tensor estimates optimal, while for increasing incidence
frequency the estimates are similarly robust as for cardiac artefacts (not shown).
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Simulations of cardiac and head motion artefacts have clearly demonstrated the e 2
benefit of the PATCH method in using the spatial structure of the artefacts. The ] - 1o
method is more robust and accurate than previous methods and, moreover, o o1 oz o3 o2 o5 o 0 20 w40 50
improves results significantly using real DWI data (not shown) — particularly for Artefact magnitude Artefact frequency (%)

motion-prone clinical patients. Finally, it should be noted that the accurate Figure 2. Cardiac artefactsin grey matter voxels. Fractional anisotropy (FA)
PATCH weights can well be used for subsequent processing (e.g. to discard data),  estimates (top row) and corresponding artefact detection scores (bottom row) for
such as higher-order diffusion modelling (in which outliers are harder to detect). different artefact magnitude (left) and frequency (right). Note the overall small
References performance drpp qf GMM z_:lnd LRESTORE, whichis dueto th_e_early hyperbol ic
_—= decay of the weighting function, resulting in non-zero fal se-positive detection

1. Mangin et al. (2002), Med Image Anal. 6:191-8. percentages (lower panels). The small performance drop for intermediate artefact
2. Chang et al. (2005), Magn Reson Med. 53:1088-95. magnitudes can be attributed to true-positive scores that have not yet reached
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