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Introduction: DTI studies can generate large numbers of images which are combined to calculate diffusion properties (typically between 1500 and 9000
images per examination). Whilst single shot EPI is fast enough to “freeze out” most motion, individual diffusion weighted images can still be damaged if
motion occurs on the timescale of a single shot. The increased motion sensitivity generated by the diffusion gradients increases the
likelihood of this. Motion between acquisitions can be corrected by image registration approaches but individually damaged images are
generally uncorrectable (figure 1). DTI data is almost always oversampled, the diffusion tensor can be estimated from a minimum of 6
diffusion weighted images but typically 32-128 measurements are obtained to improve the robustness of the estimated tensor [1]. If a
small subset of this data is then rejected the full tensor can still be estimated. Hence the challenge is to accurately and automatically
identify such images from the large number of source images and reject them from the data set. Problems associated with motion are
particularly prevalent when scanning babies (but can also be significant in some adult subjects). This work outlines an algorithm
Figurel DT image designed to automatically identify damaged images in diffusion data. The program performs a standard pipeline of processing typical
damaged by motion for DTI data prior to analysis. Registration, brain extraction followed by motion detection and data rejection. The novelty of this work
lies in the data rejection step which calculates an estimate of the diffusion data using a data driven forward model
and then compares this prediction to the acquired data using 2D image correlation to identify outlier images. This is
performed entirely as a pre-processing step making the approach compatible with all existing DTI analysis software
unlike the voxelwise outlier rejection approach proposed by Chang et al [2]. The method has been tested on 9
preterm infant data sets and 9 adult data sets. These data sets were also manually inspected for damaged data
and the results compared.

Methods: Data Acquisition: On the assumption that motion occurs in short spasms (generally true with babies)
we acquired 64 direction DTI data in 4 sections of 16 directions. Each 16 direction block consists of 16 unique
diffusion weighting directions equally spaced on the surface of a sphere. The sphere is rotated between each block
such that the combined 64 direction block has all directions also equally spaced on the surface of a sphere. This
scheme ensures that if there is an extended period of motion then this does not result in a large number of nearby
diffusion gradient directions missing, which would result in significant bias. Data processing: The 4 block data is
read and assembled into blocks of data associated with individual slices (65 images per slice; 4 b=0 and 64 DT
directions). These images were registered using an affine registration [3] and then stripped of the skull information
using BET [4]. The target registration space was the first b=0 image acquired, due to the absence of diffusion
weighting the b=0 image is extremely robust to motion (not damaged in the 18 data sets we investigated). The
registered data is then used in its entirety to calculate the full diffusion tensor (which includes information from
damaged slices) the combination of the mean b=0 image and the diffusion tensor is then used to estimate what the
diffusion weighted images should look like given this tensor. In this way we create a prediction of the individual
diffusion weighted images. The next step is to compare the measured diffusion data to this new prediction. We use

a 2D correlation metric r (equation shown, where A and B represent pixel values ZZ(Am -AlB.n-B)
in the pair of images and m and n are the 2D indices of the pixels):this generates —— —
a single number per image where 1 indicates an identical image. An automatically \/[ZZ(Am - A)’)[ZZ(BW - B)')

generated threshold is applied for each slice and any pair with a lower correlation

is rejected. A second iteration of the process can then be started with a new estimate of the tensor to identify further
outliers. The output data can then be read into any standard DTl analysis software package for subsequent
analysis. The user is also presented with plots which show the registration parameters and locations of rejected
images as a function of time as well as information regarding the number, location and b-value of rejected data.
From this a rapid qualitative assessment can be made by the user as to the overall validity of the data. Automated
warnings are generated to alert the user to any significant potential bias due to a sparse region of diffusion space or
a large amount of rejected data.

Results: 6 baby datasets were manually inspected and automatically analysed

Data | A B C [see table 1]. The automated algorithm identified all the images which had been
Set labelled as damaged by manual inspection. In many cases it also identified further
l. 2 4 0 images which on a second visual review were also seen to be damaged but not
1. 31 33 0 picked up in the first inspection. Examples of FA maps are shown from two subjects
1. 45 | 57 0 figure 2.
V. 11 11 0 Table 1. 6 neonatal subjects (I1-VI) Col A - number of imagesidentified as corrupt by
Va 125 | 146 0 visual inspection. B number identified by algorythm. C those identified manually but
Vi 6 28 0 not by algorithm. Each data set contained 3136 imagesin total

: Conclusions: The impact of the damaged data on the initial estimate of the

diffusion tensor is diluted because of the over sampling inherent in the acquisition and so tends to be reasonable.
The estimate is refined in the manner described enforcing consistency between the forward model prediction and
the measured data. Images near the very top and very bottom of the brain were excluded due to an intrinsically low
Fi . . image correlation which artificially biased any threshold determination step. This is a weakness of the method but
igure 2 Preterm infant data: The FA map . . . . . . . .
calculated without any data rejection (A) with W€ also found that manual detection also performs erratically in these regions. The time saving inherent in an
manual rejection (B) and automated (C), Itcan  automated selection is huge (up to 40 mins per subject to review subjects where significant motion is present) and
ge seen that the automatic and manual \ye helieve this alone, given the evidence of accuracy presented, gives the approach merit.
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