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Importance of multiscale analysisin HARDI studies
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Introduction and Background. High angular resolution distribution diffusion imaging (HARDI) implicitly captures information about the structure in which the
diffusion process takes place. HARDI allows examination of relatively wide range of diffusion signal angular frequencies that, due to the complexity of both diffusion
process and its milieu, may spread over multiple bands. In consequence, we opt for multiscale analysis, probing all frequencies, but also favouring those frequencies that
are more in concordance with our specific aims, which are to deduce and sharpen fibre distributions. Inherent HARDI signal sphericity motivated us to take on the
concepts of multiscale spherical wavelet analysis. Since the directions of maximal diffusion are unknown a priori, HARDI explores the space in uniform manner, and
thus suffers from a certain amount of information redundancy. HARDI projections onto predefined bases, like spherical harmonics (SHs)[1-4] can reduce the signal
complexity, but are often not fully adapted to the problem at hand (e.g., fibre orientation distribution (FOD) sparsity). Deconvolution methods for FOD estimation [5,6],
probe the signal locally, allowing for sparse representation, but are highly susceptible to noise. Nonetheless, they work quite well even at low b-values. Recently, an
elegant framework for HARDI multiscale, ridgelet analysis was derived [7], reducing the signal representation to as little as 10 basis functions. We propose to denoise
and sharpen the orientation distribution function (ODF) directly [8]. The algorithm that we employ is based on the spherical version of “a trous” algorithm [9], using
B3-spline scaling function (defined in Fourier space). Using Funk-Radon relation between ODF and HARDI signal, we define a framework to probe HARDI signal
directly and obtain a sparse and sharp representation of angular content of diffusion. Herein, we would like to stress the importance of multiscale signal analysis
(through illustrative examples), and to show applications to real data, with as little as 64 directions, and b-value of 1000 s/mm?2.
M ethods. Image Acquisition. Physical phantoms, emulating two fibre bundles crossing at 45° and 90° [10] were acquired on a 1.5T Signa MR system (GE Healthcare,
Milwaukee), TE/TR =130ms/4.5s,12.0s (45° and 90° phantom, respectively), BW=200KHz. FOV = 32cm, matrix size of 32x32), b = 2000s/mm?, 4000 uniformly
distributed orientations SNRmin > 4. The first real dataset was acquired on the same scanner. Twice refocused DW-SS-SE-EPI (TE/TR=100.2ms/19s, BW=200KHz,
FOV=24cm on a 128x128 matrix, TH=2mm, 60 axial slices) was employed to obtain T2-weighted (b=0) and HARDI (b=3000s/mm?, 200 directions) data of a healthy
volunteer (publicly available HARDI database [11]). The second real data set was acquired on 3T Trio MR system (Siemens, Erlangen). Parallel imaging with GRAPPA
factor of 2 (TE/TR=147ms/11,5s, BW=1680Hz/pixel, 96x96 matrix, resolution 2x2x2mm’, 60 axial slices) was employed to obtain T2-weighted (b=0) and HARDI
(b=1000s/mm2, 64 directions) data of a healthy volunteer. ODF wavelet analysis. In [8], we derived in detail our algorithm for ODF wavelet-based denoising and
sharpening. The analysis is redundant, and the frequencies decrease dyadically with increasing scales. The scaling function is spherical B3-spline, and wavelets at each
scale are defined as the difference of “lowpass” signal content at two successive scales. The final ODF decomposition amounts to: V= ‘PJ+ Z(x)j (¥ stands for ODF, ‘{‘J

for its lowest frequency content and (x)J for its high frequency details, i.e., wavelets at each frequency scale j; j = 0 to J, and J = 2 for the experiments herein). Typically,

the frequencies we analyse correspond to SH orders from 2 to 8/16. Since our goal is not only to denoise and shrink the data but also (and very importantly) to amplify

its angular frequency content relevant for fibre orientation estimation, we reduce ODF to sharp ODF that is given by: ¥ N =X0.( Note that the maximum SH order of
shap ]

‘PJ is typically not higher than 2, i.e. it corresponds to a 2™ order tensor, and is not of interest in descriptions of more “exotic” fibre configurations, including crossings,

kissings, splits, etc.). The final ‘Pghw is obtained after wavelet reduction at each scale, and is given as a sum of 4 (for 90° phantom) and 10 (for 45° phantom and both

real data sets) wavelet coefficients (per scale) with largest magnitudes. Laplace-Beltrami smoothing [4] was used when estimating the SHs (A =0.006), to render them
more stable, especially in real data where SNR was rather low (=2).
Results. First, we illustrate the method on the phantom data. The purpose is to show how different angular frequency bands capture different information even for
controllable geometries, stressing the importance of multiscale analysis. Only with the sum of distinct frequency components can we appreciate the true fibre
constellation and (importantly) the proportions between these different compartments. Then, we show the similar findings on real data. Also, on real data, we show
some limiting results (i.e., low orientation number, confining the frequency spectrum to those SH orders that can be reliably estimated from such a “reduced” spatial
sampling), where the wavelets are shrunk to a single scale. In this limit, multiscale analysis can no longer be performed, nonetheless the wavelet framework can still be
used to denoise and sharpen the data, even at a single level.
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Figure 1. a, ¢, d, e, f correspond to 90°-crossing and b, f, g, h, i, j to 45°-crossing phantom. For

l --_..*J? )c Acboth phantoms from left to right: phantom, SH-analytical ODF (max SH order = 16), lowest

scale details (max SH order = 16), second scale details (max SH order = 8), and our sharp ODF.
Fort both phantoms, HARDI directions were sub-sampled to 200, uniformly distributed. Note
how different scales capture complementary information about fibre distribution. This is in

pamcular prominent for the 90°-crossing phantom, where each scale catches one of the two fibre directions (y and x, respectively).
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Figure 2. a) Analysed ROI, b) SH-analytical ODF (max SH order = 8), c) lowest scale details (max SH order = 8), d) second scale details (max SH order = 4), e) sharp
ODF, f) sum of lowest frequency signal scale (max SH order = 2) and sharp ODF (i.e., overall reconstructed ODF), g) three illustrative examples from white matter of
the same ROI (shown are b, ¢, d and e parts), of how different scales capture complementary information about fibre distribution (i.e., different principal fibre directions

ina voxel) and the proportion between different fibre compartments.
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Discussion. We demonstrated our algorithm to reduce and sharpen ODFs within the framework of spherical wavelet analysis. We showed on phantom and real data that
signals are spread over multiple frequency scales, and that different scales capture complementary information about fibre distribution, and the proportion between
different fibre compartments (the latter being more important for smaller crossing angles). Thus, we strongly advocate the importance of multiscale analysis of HARDI
signals. Also, although for lower angular resolution of acquired HARDI data it is not possible to employ multiscale analysis and significantly reduce the data, spherical
wavelets can still be successfully employed to sharpen ODF profiles, as it was seen through the example of the second real data set (Fig. 3).
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