

Application of a modified quantitative BOLD approach to monitor local Blood Oxygen Saturation in two glioma models and a stroke model in rat

T. Christen^{1,2}, B. Lemasson^{1,3}, N. Pannetier^{1,2}, O. Detante^{1,2}, R. Farion^{1,2}, E. Grillon^{1,2}, C. Segebarth^{1,2}, C. Rémy^{1,2}, and E. L. Barbier^{1,2}

¹Inserm, U836, Grenoble, F-38043, France, ²Université Joseph Fourier, Grenoble Institut des Neurosciences, UMR-S836, Grenoble, France, ³Oncodesign Biotechnology, Dijon, France

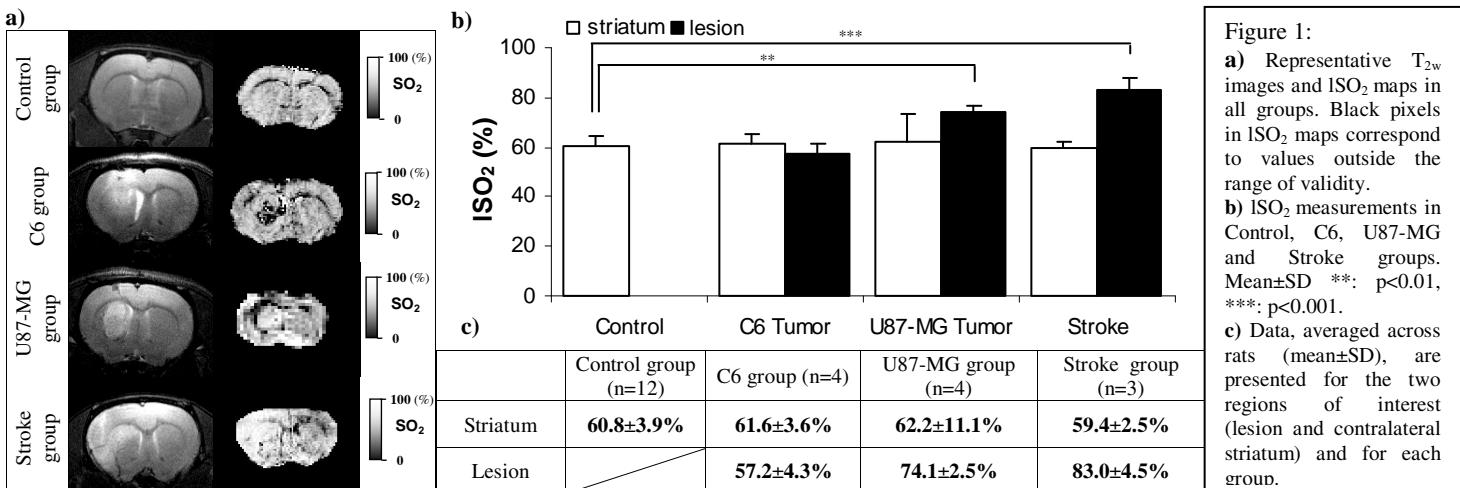
Introduction

Brain oxygenation level is physiological information of interest in numerous cerebral pathologies. However, few MRI techniques for quantifying oxygen-level parameters (such as partial pressure of oxygen, oxygen extraction fraction...) are available. Recently, He and Yablonskiy proposed an *in vivo* MR approach – quantitative BOLD – to obtain local blood oxygen saturation (ISO₂) maps [1] [2]. In this study, we evaluate a modified version of the qBOLD technique in two cerebral diseases: stroke and tumor.

Theory

The gradient echo MR signal decay can be described by: $S(t)=Cte \cdot F(t) \cdot \exp(-t \cdot R_2) \cdot \exp(-t \cdot R_2')$ (water diffusion neglected) [Eq. 1] Where Cte is a proportionality constant, F(t) represents the contribution to signal attenuation caused by macroscopic field inhomogeneities [1], $R_2 = 1/T_2$ and $R_2' = 1/T_2' = 4/3 \cdot \pi \cdot \Delta \chi_0 \cdot Hct \cdot (1-ISO_2) \cdot B_0 \cdot \gamma \cdot BVf$. $\Delta \chi_0$ represents the change in magnetic susceptibility between oxy and deoxy-haemoglobin (0.264 ppm), Hct for hematocrit (%), and γ for magnetogyric ratio.

Material and methods


Animals (n=23) were anaesthetized using isoflurane (2%). The tail vein was equipped with a catheter. Four groups of animal were studied:

- **Control group:** male Wistar rats were used as control (n=12).
- **C6 group:** 10⁵ C6 glioma cells were orthotopically implanted in the striatum of Wistar rats (n=4). Imaging was performed 18 days after tumor implantation.
- **U87-MG group:** 10⁵ U87-MG glioma cells were orthotopically implanted in the striatum of male nude rats (n=4). Imaging was performed 34 days after tumor implantation.
- **Stroke group:** Transient (90min) focal brain ischemia was induced by occlusion of the right Middle Cerebral Artery using the intraluminal suture model [3] in male Sprague-Dawley rats (n=3). MRI was performed 2 days after ischemia.

MR imaging was performed at 4.7T on a Bruker Avance 3 console using volume/surface cross coil configuration. All data were acquired with the same geometry (7 contiguous, 1mm-thick slices, FOV=30x30mm; matrix=64x64 or 128x128), except for B₀ mapping (3D GE sequence, FOV=30x30mm, matrix=128x128x40, TR=100ms TEs=4 and 12ms). Acquisition protocol was: brain shimming, B₀ mapping, T₂ mapping (TR=1500ms, 20 spin-echoes, $\Delta TE=12ms$), T₂* mapping (TR=1500ms, 30 gradient echoes, $\Delta TE=2.5ms$), BVf/VSI mapping [4] (multiple gradient-echoes spin-echo sequence, before and 3min after injection of 200 μ mol/kg of iron oxide particles (USPIO: Combidex®/Sinerem®, Amag Pharmaceuticals/Guerbet): TR=6000ms; $\Delta TE_{GE}=3ms$; TE_{SE}=60ms). The entire MRI protocol lasted 1h15 per animal.

Processing was performed with the Matlab environment and using home-made software. B₀ map was obtained by unwrapping the phase maps of the 3D GE sequence [5]. This B₀ map was used to compute F(t) in [1]. T₂ was computed using a non-linear fit algorithm and a two-parameter exponential decay. BVf and VSI were obtained with the formula given in [4] using 700 μ m²/s for the apparent diffusion coefficient and 0.28ppm for the increase in intravascular magnetic susceptibility due to the injection of USPIO [4]. To compute ISO₂ maps, Eq [1] was fitted to the MR gradient-echo data. Since maps of BVf, R₂, and F(t) are available, the fitted parameters were Cte and ISO₂. Data, averaged across rats in each group, are presented for 2 regions of interest (healthy striatum and tumor or stroke region). Student t-tests (after assessment of variance homogeneity) were used to assess differences (**:p<0.01, ***:p<0.001).

Results

ISO₂ estimates in contralateral striatum of lesioned groups did not differ from that in Control striatum value (61±1.2%; Fig. 1b-c). In the C6 tumor, ISO₂ did not differ from Control striatum (57.2±4.3%; Fig. 1b-c). In the U87MG tumor and in the infarcted region, ISO₂ was higher than in Control striatum (74.1±2.5% and 83.0±4.5% respectively; Fig. 1b-c). ISO₂ value in the infarcted region is in good agreement with the reported luxury perfusion [6].

Conclusion

Values of ISO₂ in the contralateral striatum of rats bearing a brain lesion or in healthy rats are consistent with the literature [7]. The small standard deviation suggests that the proposed ISO₂ measurement approach is reproducible. This study shows differences in ISO₂ values between two glioma models (C6 and U87-MG) and modification in case of focal brain ischemia model. Our results suggest that MRI measurement of ISO₂ might be an interesting biomarker to characterize brain lesion and improve therapeutic monitoring. Further insights on the physiological meaning of ISO₂ are thus required.

Reference

[1] He and Yablonskiy, *Magn Reson Med*, 2007.[2] An and Lin, *JCBFM*, 2000.[3] Longa et al, *Stroke*, 1989.[4] Tropèrs et al, *Magn Reson Med*, 2001.[5] Jenkinson, *Magn Reson Med*, 2003.[6] Lin et al, *Stroke*, 2002. [7] Y Chen et al, *Phys Med Biol*, 2003.