MULTI-EXPONENTIAL ANALYSIS OF T₂ RELAXATION IN THE HUMAN SPINAL CORD: DIFFERENCES BETWEEN GREY AND WHITE MATTER

N. Fichtner¹, E. L. MacMillan², B. Mädler³, A. Curt^{4,5}, D. K. Li⁶, M. F. Dvorak^{5,7}, and A. L. MacKay^{1,6}

¹Dept. of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada, ²Dept. of Clinical Research, University of Bern, Bern, Switzerland, ³Philips Healthcare, Vancouver, BC, Canada, ⁴Dept. of Neurology, University of British Columbia, Vancouver, BC, Canada, ⁵International Collaboration on Repair Discoveries, Vancouver, BC, Canada, ⁶Dept. of Radiology, University of British Columbia, Vancouver, BC, Canada, ⁷Dept. of Orthopaedics, University of British Columbia, Vancouver, BC, Canada

Introduction: The ability to produce magnetic resonance images with strong contrast between white matter (WM) and grey matter (GM) in central nervous system (CNS) tissue is crucial for the investigation of a wide range of neurological diseases. In order to determine optimum parameters for contrast differentiation, it is necessary to know both the T_1 and T_2 relaxation characteristics of each tissue, each of which could have multiple values. Healthy brain and spinal cord (SC) typically exhibit three unique environments in which water protons are found: cerebrospinal fluid (CSF), intra/extra-cellular (I/E) water and myelin water; the different pools of water molecules each have their own spin-spin relaxation rates and cause the overall spin-spin relaxation to become multi-exponential, which gives multiple T_2 values [1,2]. Recent literature employing an 8-echo T_2 relaxation experiment with a single-exponential fit reported no significant difference in T_2 times between WM and GM in the healthy human SC at the C3 level [3]. However, as there is clearly sufficient contrast on conventional T_2 -weighted images to distinguish between WM and GM, a difference in T_2 relaxation time is to be expected. The present study sought to determine differences in T_2 relaxation times between WM and GM in the healthy human SC through the implementation of a 32-echo T_2 relaxation experiment and multi-exponential fit. In particular, the geometric mean T_2 (GMT2; analogous to the amplitude-weighted mean on a logarithmic scale) values were calculated for the I/E water and the entire (global) T_2 distribution.

Methods: MR Experiments: Healthy volunteers (12 subjects, mean age 25y, range 21-30y) were recruited in accordance with the local institutional ethics review board. Subjects were scanned on a 3.0T MRI system (Philips Healthcare, Best, The Netherlands) with a phased array spine coil using only the first four channels. After localizer scans, a multi-echo T_2 relaxation experiment was performed using a 3D 32-echo sequence (first echo at 10 ms, echo spacing of 10 ms, TR=1300 ms, six 5 mm thick axial slices perpendicular to the spinal cord, 256×128 matrix, field of view 180 mm×135 mm, single acquisition) [4]. The stack was centered at the C5 vertebra, and oriented perpendicular to the SC.

Data Analysis: The 32-echo decay curve for each pixel was decomposed into an unspecified number of exponentials using a regularized non-negative

least squares (NNLS) algorithm with 120 input relaxation times spaced logarithmically from 15 ms to 2s [2]. Both χ^2 and solution roughness were minimized such that χ^2 fell between 1.02 and 1.025 times the minimum χ^2 from the NNLS solution. The GMT₂ of both the I/E water (defined by the T₂ range of 35 – 200ms), and the global distribution (defined by the T₂ range of 15ms – 2s) were calculated for each pixel from the T₂ distribution output by the NNLS algorithm to generate GMT₂ maps. WM and GM regions of interest (ROIs) were drawn on myelin water fraction images (maps of the fraction of the T₂ distribution between 15 – 35ms), and the mean GMT₂ for each ROI was the average over the ROI on the GMT₂ map. Group comparisons were evaluated using a two-tailed Student's t-test, with significance taken as p \leq 0.05.

Results: The I/E GMT₂ was found to be significantly higher in WM than in GM (Table 1); in contrast, the global GMT₂ was found to be significantly lower in WM than in GM (Table 1). Figure 1 shows a comparison of the global and I/E GMT₂ maps. A significant difference was expected as WM and GM have different compositions and produced visible contrast in T₂-weighted images.

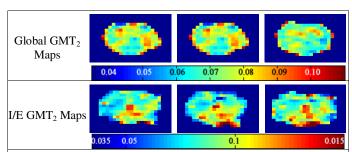


Figure 1. Examples of global GMT_2 maps (top row) and I/E-water GMT_2 maps (bottom row) for 3 slices at the C4 level from a healthy subject. Images are on the same physical scale. Each colour bar indicates the scale (in seconds) of the maps above it.

Table 1: Geometric Mean T ₂ (GMT ₂) in Healthy Adults (mean ± standard deviation)			
	GM GMT ₂ (ms)	WM GMT ₂ (ms)	Significance b/w GM & WM
Global distribution (T ₂ from 15ms-2s)	79 <u>+</u> 8	71 <u>+</u> 16	p < 0.001
I/E peak (T ₂ from 35-200 ms)	80 <u>+</u> 8	99 <u>+</u> 9	p < 0.001

Conclusions: This study indicates for the first time that there is a significant difference between WM and GM for both the global and intra/extracellular GMT $_2$ in human spinal cord. These differences could help to determine parameters for better contrast in T_2 -weighted images and to investigate pathology in the spinal cord, such as edema and inflammation. Finally, these results confirm that multi-exponential analysis is a more sensitive method than single-exponential fitting for analysis of T_2 relaxation measurements in spinal cord tissue.

Acknowledgments: Cervical Spine Research Society, Michael Smith Foundation for Health Research, International Collaboration on Repair Discoveries, Natural Sciences and Engineering Research Council of Canada, MR technologists, Corree Laule, and study volunteers.

References: 1. MacKay, A., et al. MRM, 31, 673-677 (1994). 2. Whittall, K.P., et al. MRM, 37, 34-43 (1997). 3. Smith, S., et al. MRM, 60, 213-219 (2008). 4. Mädler, B. ISMRM. 2006:2112