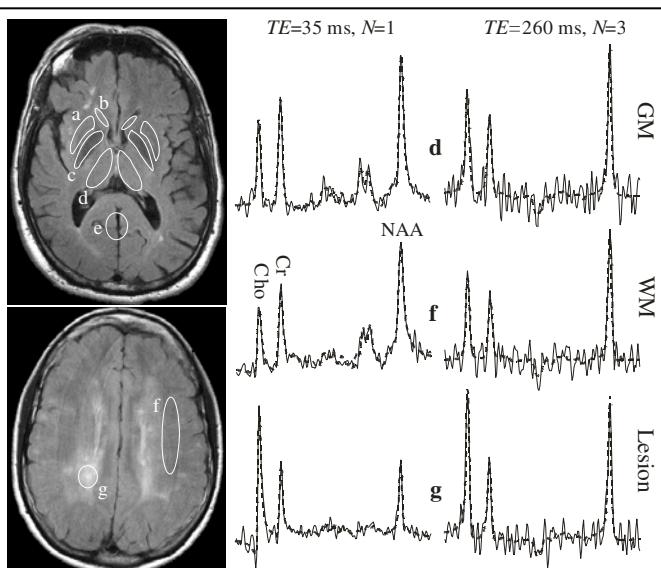


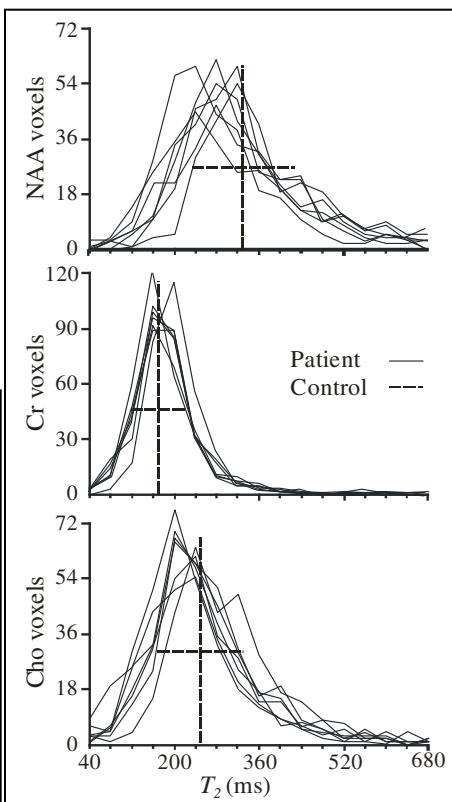
Brain Metabolites Proton T2 Mapping at 3 Tesla in Relapsing-Remitting Multiple Sclerosis


I. I. Kirov¹, L. Fleysher¹, R. Fleysher¹, S. Liu¹, J. Herbert², and O. Gonen¹

¹Radiology, NYU SOM, New York, NY, United States, ²Neurology, NYU SOM, New York, NY, United States

INTRODUCTION: MRI-occult pathology in Multiple Sclerosis (MS) is detectable with proton MR spectroscopy (¹H-MRS), but unlike conventional (qualitative) MRI, ¹H-MRS needs to account for parameters that affect its quantitative assessment. At intermediate- and long-echo times (TE) the molecular environment factors require knowledge of the local transverse, T_2 , relaxation time. To our knowledge, brain metabolites T_2 s have not been thoroughly characterized in MS patients, forcing two implicit assumptions on ¹H-MRS: that the same global T_2 s can be used (i) anywhere in the brain (ii) for all MS subjects. While recently substantiated in healthy individuals (1-2), these assumptions require validation in MS, given its well documented focal and diffuse pathology and different clinical course. Specifically, three scenarios can be envisioned (from best to worst): (i) regional inter- and intra-patient T_2 s are indistinguishable from controls, incurring no bias; (ii) similar inter- and intra-patient T_2 s differ significantly from controls', requiring one set of T_2 corrections; (iii) significant regional intra- and inter-patient variations, requiring individual regional T_2 correction. Our aim, therefore, was to obtain the T_2 distributions of *N*-acetylaspartate (NAA), choline (Cho) and creatine (Cr) at 3 T in the most common (85%) relapsing-remitting (RR) phenotype of MS and assess any bias incurred by differences in inter- and intra-patient T_2 s. This was done using 1 cm³ spatial resolution three-dimensional ¹H-MRS in a two-point protocol optimized for T_2 -precision per unit time (3).

METHODS: Seven patients (42±13 years old, 3 women, 4 men) with clinically definite RR MS (mean disease duration 3 years, range 1-7) and mean EDSS of 3 (range 0.0-5.0) were scanned at 3 Tesla. MPRAGE and T_2 -weighted FLAIR MRI guided a PRESS 10_{AP}×8_{LR}×4_{IS} cm³ volume of interest (VOI) with TR =1.26 s. The two-point T_2 estimation paradigm (3) optimized the two TE s, and the number of averages (N_1 and N_2) to TE_1 =35 ms ($N=1$) and TE_2 = 260 ms ($N=3$). The VOI was encoded with Hadamard spectroscopic imaging into 4 (IS) slices, each partitioned with 16×16 CSI over a 16×16 cm² (AP×LR) FOV, yielding 320 voxels, each 1.0_{AP}×1.0_{LR}×1.0_{IS} cm³. Metabolite peak areas at the short (S_1) and long TE (S_2) were fitted (SITools software (4)) and T_2 s estimated using $T_2 = (TE_2 - TE_1) / \ln(S_1 / S_2)$ in all 320 voxels in the VOI, within 10 manually transcribed gray matter (GM) and white matter (WM) structures, and within T_2 -weighted MRI hyperintense lesions (Fig. 1). All T_2 s were corrected for the T_1 -weighting incurred by our use of the 1.26 s TR , assuming an average T_1 value of ~1.2 s for each of the three metabolites reported in the literature (5).


Figure 1: Left: Axial T_2 -weighted FLAIR images showing the manually outlined ROIs in the putamen (a), caudate (b), globus pallidus (c), thalamus (d), posterior cingulate gyrus (e), centrum semiovale (f) and T_2 -hyperintense lesion (g). Right: GM, WM and lesion spectra from the ROIs at both TE s (solid lines), superimposed with their model functions (dashed lines) fit (4) for NAA, Cr and Cho. Note the excellent SNR and fit in both TE s.

RESULTS: Histograms of T_2 s from all voxels of each patient revealed inter- and intra-subject similarity similar to age-matched controls' (Fig. 2). The T_2 s (average±standard error) in GM, WM and lesions were: NAA: 307±21, 354±16 and 358±72 ms; Cr: 174±2, 181±15 and 184±18 ms; and Cho: 252±19, 259±10 and 226±124 ms. Compared to average T_2 s of controls, this amounted to differences of only 4% for NAA, and 3% for Cr and Cho.

CONCLUSION: Based on these results we can conjecture that for metabolic quantification in MS: (i) obtaining T_2 values for each patient is unnecessary; and (ii) for TE s under 100 ms a global average T_2 value per metabolite suffices, therefore, (iii) obtaining regional brain and lesion T_2 s is also not needed.

REFERENCES: 1. Kirov *et al.* MRM 2008 2. Tsai *et al.* MRM 2007 3. Fleysher *et al.* MRM 2007 4. Soher *et al.* MRM 1998
5. Traber *et al.* J Magn Reson Imaging 2004

Figure 2: NAA, Cr and Cho T_2 histograms from all 320 voxels of each patient (solid lines) superimposed on the age-adjusted mean and full-width-at-half maximum of normal controls (dashed lines) from ref (1). Note the overlapping histograms, reflecting the inter- and intra-subject T_2 -similarity among patients.