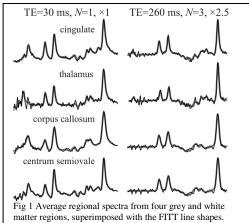
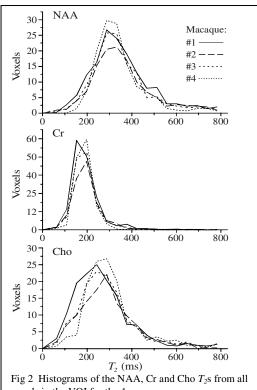
## METABOLITE T2 MAPPING IN THE HEALTHY RHESUS MACAQUE BRAIN AT 3 T

S. Liu<sup>1</sup>, O. Gonen<sup>1</sup>, L. Fleysher<sup>1</sup>, R. Fleysher<sup>1</sup>, B. Soher<sup>2</sup>, C-G. Joo<sup>3</sup>, E-M. Ratai<sup>3</sup>, and R. González<sup>3</sup>


<sup>1</sup>NYU School of Medicine, New York, NY, United States, <sup>2</sup>Duke University, Durham, NC, United States, <sup>3</sup>Massachusetts General Hospital, Boston, MA, United States

**Introduction:** The biochemical, morphological, and functional similarity between human brain and its rhesus macaque counterpart has lead to extensive use of the latter as an advanced model for neurological disease and treatment studies. To facilitate correction for the adverse effect of T<sub>2</sub> weighting on the accuracy of metabolic quantification, we measured the T<sub>2</sub>s of NAA, Cho and Cr in several brain regions of four rhesus macaques at 3T with 3D MRSI at 180uL spatial resolution using a two-point protocol optimized for precision per unit time.

Methods: Four healthy macaques were studied. All experiments were done in a 3T scanner (Siemens, Erlangen, Germany) using a transmit-receive knee coil. Axial and sagittal MRI were acquired. A  $30_{LR}$  mm  $\times 42_{AP}$  mm  $\times 20_{IS}$  mm VOI was graphically prescribed in a  $96_{LR}$  mm  $\times$   $96_{AP}$  mm  $\times$   $20_{IS}$  mm FOV, and aligned along the splenium-genu axis of the corpus callosum. The VOI was excited using PRESS and the FOV was partitioned into  $16_{LR} \times 16_{AP}$  2D CSI and 4th order 1D Hadamard spectroscopic imaging along the inferior-superior direction. A two-point scheme that optimizes not just the usual two TEs, but also the number of averages, N<sub>1</sub> and N<sub>2</sub>, at each, for the best T<sub>2</sub> estimate/unit time was used. Using the literature human Cr T<sub>2</sub>≈180 ms, as the initial value for the sought after  $T_2$ s, has led to  $TE_1=30$  ms (minimum for our setup),  $N_1=4$  and  $TE_2=260$  ms ( $TE_1+1.25\times T_2$ ),  $N_2=12$ . All experiments share the same TR=1800ms.


**Results:** Sample regional spectra at the short and long echo times are show in Fig 1. They demonstrate the SNR and spectral resolution obtained from 180ul voxels at these TEs. The regional and global T<sub>2</sub> values obtained are compiled in Table 1 as means ± standard error of the mean (SEM). Note that the T<sub>2</sub>s of NAA, Cr and Cho are very similar in both GM and WM structures. The T<sub>2</sub> histograms for the NAA, Cr and Cho from all voxels in the VOIs in each of the four animals studied are shown in Fig. 2. Note the overall histogram shape for each of the three metabolites is very similar. The results reveal that these  $T_2$ s are in excellent agreement with the corresponding T<sub>2</sub>s obtained in the human brain.

Conclusion: Combining 3D <sup>1</sup>H-MRS with an optimized two-point acquisition protocol makes for the most efficient use of time to map the T<sub>2</sub> distribution of <sup>1</sup>H-MRS observable neuro-metabolites in rhesus macaques. These regional T2 values are (i) similar among animals indicating that they may be characteristic; and (ii) in excellent agreement with reported values in humans at that B<sub>0</sub>, as expected from a



|                               |                       | NAA T <sub>2</sub> (ms) | Cr T <sub>2</sub> (ms) | Cho T <sub>2</sub> (ms) |
|-------------------------------|-----------------------|-------------------------|------------------------|-------------------------|
| Gray matter (GM) structures:  | Caudate               | 323±18                  | 178±8                  | 261±13                  |
|                               | Thalamus              | 337±5                   | 175±10                 | 289±8                   |
|                               | Putamen               | 338±16                  | 179±5                  | 283±13                  |
|                               | Cingulate gyrus       | 304±7                   | 178±8                  | 264±15                  |
|                               | GM structures Average | 325±8                   | 178±2                  | 274±7                   |
| White matter (WM) structures: | Splenium of CC        | 308±6                   | 181±1                  | 248±7                   |
|                               | Centrum semiovale     | 316±7                   | 182±4                  | 263±9                   |
|                               | WM structures Average | 311±4                   | 181±1                  | 255±8                   |
| Global WM+GM average          |                       | 316±7                   | 177±3                  | 264±9                   |

Table 1 Mean±SEM T2 relaxation times (ms) at 3 T of the N-acetylaspartate (NAA), creatine (Cr) and choline (Cho) in the various GM and WM brain regions.



voxels in the VOI for the 4 macaques.

model-system. The T<sub>2</sub>s and their variations between WM and GM structures indicate that for the purpose of <sup>1</sup>H-MRS quantification at 3 T the use of one T<sub>2</sub> value for each metabolite is sufficient for intermediate or long TE across both humans and macaques.

## References

[1] Fleysher R. et al. Magn. Reson. Med. 2007, 57:380. [2] Zaaraoui W. et al. Magn. Reson. Med. 2007, 57:983. [3] Goelman G. et al. Magn. Reson. Med. 2006; 56:34.