

Detection limits of Very Small Iron Oxide Nanoparticles in labeled cells: a quantitative evaluation of histochemistry and MR-relaxometry

G. Klug¹, J. Bremicker¹, T. Kampf², E. Bauer¹, T. Basse-Lüsebrink², M. Weber³, U. Gbureck⁴, U. Nöth³, P. M. Jakob², and W. R. Bauer¹

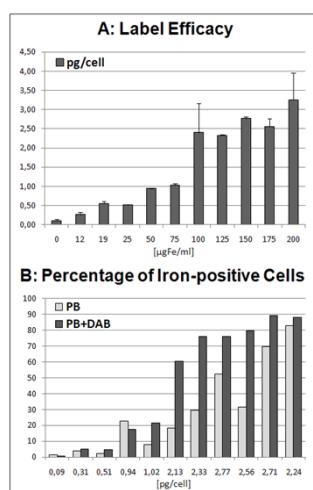
¹Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany, ²Experimentelle Physik 5, Universität Würzburg, Würzburg, Germany, ³Orthopädisches Zentrum für Muskuloskelettale Forschung, Orthopädische Klinik König-Ludwig Haus, Würzburg, Germany, ⁴Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde, Universitätsklinikum Würzburg, Würzburg, Germany

Background: Prussian-Blue (PB) histochemistry is a standard method to proof intracellular accumulation of iron, which is also valid for Iron Oxide Nanoparticles (IONs). Schroeter et al. demonstrated a lack of sensitivity of PB for IONs in experimental brain ischemia and proposed an improved method which relies on the enhancement of PB with diaminobenzidine (PB+DAB) [1]. With regard to the growing interest in MR-cell-tracking based on ION-labeled cells a determination of detection limits of IONs by means of MRI and histochemistry remains crucial.

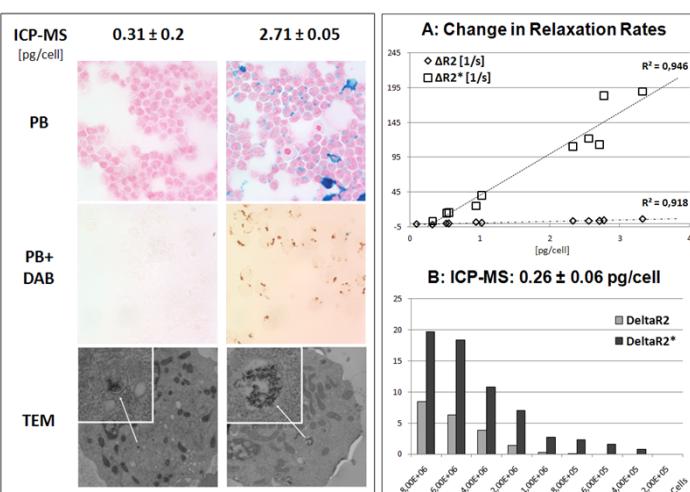
Purpose: We investigated the relation between intracellular iron content (pg/cell) and the capability of histochemistry and MRI to detect *in vitro* ION-labeled cells.

Methods: Immortalized peritoneal mouse macrophages (2×10^7 /6ml medium) were incubated with Very Small Iron Oxide Nanoparticles (VSOP C-200, Ferropharm, Teltow, Germany) at increasing concentrations ($n=10$) ranging from 0 to 200 $\mu\text{g}/\text{ml}$ for 4 hours. In order to determine iron content per cell (pg/cell) inductively coupled plasma mass spectrometry (ICP-MS) was performed. Furthermore cellular uptake of VSOP was verified by transmission electron microscopy (TEM).

Histological slides ($n=6$) were prepared from cells of each labeling-protocol for PB- and DAB-PB-staining in order to evaluate their sensitivity. Cells were counted in 3 high-power fields (magnification: 100x) and the percentage of apparently stained cells was recorded. Furthermore, 2×10^6 cells from the same protocols were homogeneously dispensed in 0.5ml of 0.5% agarose gel for MR-relaxometry.


Additionally, the impact of cell number on MR detection limits was investigated on 2×10^5 to 8×10^6 identically prepared cells. MR measurements were performed on a 7 Tesla MR-scanner (Bruker Biospin GmbH, Rheinstetten, Germany). The MR-protocol contained Multi-Spin-Echo-Sequences (CPMG-echo-train, TR: 4.5 [ms], TE: 5 [ms], 250 echoes) for T2 determination. T2* values were determined spectroscopically by fitting the FID after a single pulse excitation. Subsequently the change in relaxation rates induced by VSOP uptake (ΔR_2 , ΔR_2^*) was plotted against the number of iron labeled cells. All data are presented as mean \pm SD.

Results: After labeling, trypanblue exclusion test showed more than 90% of viable cells. With rising VSOP concentrations used for cell-labeling cellular iron content increased from 0.26 ± 0.06 to 3.26 ± 0.7 pg/cell (Fig. 1. A). TEM confirmed the vesicular uptake of VSOP.


Histological slides showed a higher percentage of iron-positive cells with increasing intracellular iron content determined by ICP-MS. The enhancement of PB by DAB lead to a higher sensitivity for intracellular iron (Fig. 1. B). Nevertheless at iron contents below 2.13 pg/cell both staining methods showed less than 25% iron positive cells. On TEM images and ICP-MS, however, intracellular iron was detected at concentrations as low as 0.26 pg/cell whereas PB and DAB-PB revealed only 4% and 5% iron-positive cells (Fig. 2.).

The T2 and T2* shortening effects of VSOP were positively correlated with intracellular iron content (Fig. 3. A). Even at 0.26 pg/cell a significant change of relaxation rates was observed. ΔR_2^* and ΔR_2 increased with ascending number of cells in the phantom. At low cell number, ΔR_2^* was up to 25-times ΔR_2 (Fig. 3. B).

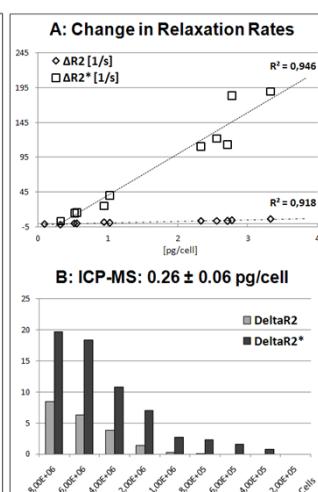

Conclusion: We have shown that MRI is able to detect even low amounts of intracellular VSOP that histochemistry fails to detect. Our results suggest that for the histological validation of MR-cell-tracking studies with VSOP at least 2.13 pg/cell should be achieved.

Fig. 1. A: Intracellular iron content (pg/cell) after labeling plotted against the label concentration ($\mu\text{gFe}/\text{ml}$). B: Comparison of PB and PB-DAB.

Fig. 2: Examples of high-power fields used for the determination of PB-positive (upper row, blue staining) and PB-DAB-positive (middle row, brown staining) cells. TEM (lower row) confirmed vesicular iron at low and high intracellular iron content (ICP-MS).

Fig. 3. A: Scatterplot showing the correlation of intracellular iron content (R_2^*) with the change of relaxation rates (ΔR_2 and ΔR_2^*). B: At identical iron content the change in R_2 and R_2^* decreased with the absolute cell number in the phantom.

References: [1] M. Schroeter et al.; MRM, V. 52, pp.403-406 (2004)