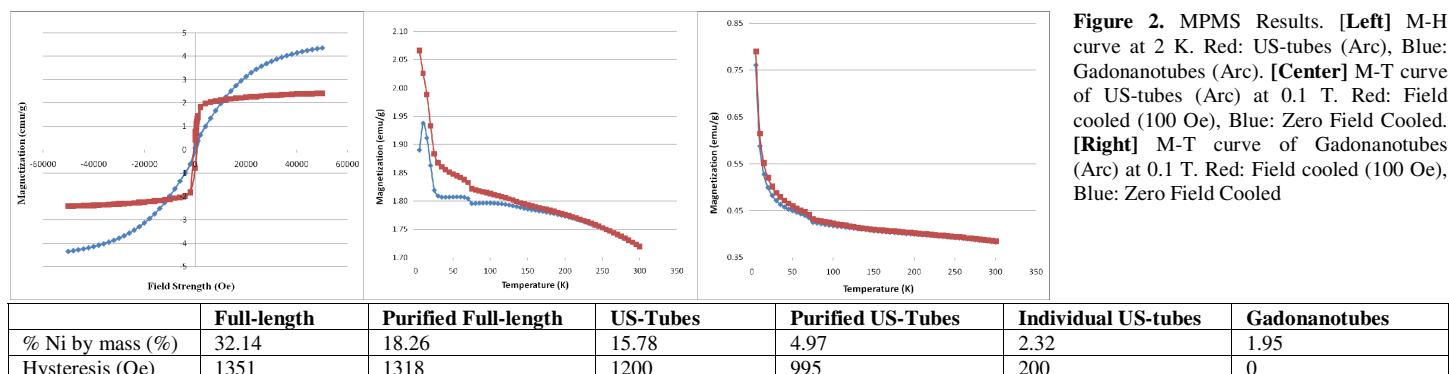


Gadonanotubes as a Dual Modal T_1 and T_2^* MRI Contrast Agent: Magnetic Property Characterization by SQUID Magnetometry

M. L. Matson¹, and L. J. Wilson¹

¹Department of Chemistry, Rice University, Houston, TX, United States


Figure 1. Illustrated diagram of Gadonanotube.

pyrolysis following previously established methods (1). The hydrophobic US-tubes exist as bundles, yet reduction of the tubes via metallic sodium in aprotic solvent causes exfoliation of the bundles yielding individualized US-tubes (3). Finally, the US-tubes are bath sonicated in $GdCl_3$ (*aq*) rendering individual Gadonanotubes.

Magnetic Property Measurements

Approximately 10 mg of each of the above prepared samples were encapsulated within diamagnetic low density polyethylene. These samples were placed in a diamagnetic mounting straw and their magnetic properties were measured using a Quantum Design SQUID magnetometer. The samples then underwent a demagnetization sequence before being cooled to 2 K and varying the field strength from 0 to 5 T creating M-H curves at 2 K. Next, the samples underwent another demagnetization before creating zero field cooled (ZFC) and field cooled (FC) samples under 1000 Oe (0.1 T) varying the temperature from 5 K to 300 K.

Results

Table 1. Table denoting the % Ni catalyst remaining in the nanotube sample, as well as the amount of hysteresis present in the M-H curves for Arc tubes.

Discussion and Conclusion

US-Tubes

For both the Arc and HiP_{CO} synthesized tubes, the catalyst % (Ni and Fe, respectively) decreased at each step of preparation in that there is a direct correlation seen between the catalyst % and the degree of hysteresis as shown in Table 1. The catalyst particles likely exist in multiple domains, with each purification step causing the remaining catalyst to become closer to a single-domain system, hence the decrease in hysteresis (4). Furthermore, the step function M-H curve (Fig. 2 – left) and the delineated ZFC and FC curves on the M-T curve with a categorical blocking temperature around 100 K (Fig. 2 – center) suggest that empty US-tubes are predominately superparamagnetic (5). At clinical field strength (1.5 T), the US-tubes are magnetically saturated; the resulting perturbing dipolar field explains the significant reduction in T_2^* . Further experiments are required to determine whether the superparamagnetism stems from nanoscale catalyst clusters or defect sites along the carbon sidewalls.

Gadonanotubes

The Gadonanotubes show a strong increase in magnetization (emu/g), and their M-H curve changes from the step function of the US-tubes to a more sigmoidal curve with no hysteresis or magnetic saturation (Fig. 2 – left). This change is indicative of the sample becoming more paramagnetic when internally loaded with aquated Gd^{3+} -ion clusters (4). Furthermore, the M-T curve shows a reversible ZFC/FC cycle, with the sharp upward curve also indicative of paramagnetism (Fig. 2 – right). The strong paramagnetic domain of the Gadonanotube's internalized Gd^{3+} -ion clusters explains the large decrease observed in T_1 relaxation times (1). This paramagnetic domain, coupled with the superparamagnetic domain of the US-tube nanocapsule shell, produces Gadonanotubes that are a dual modal MRI contrast agent capable of decreasing both T_1 and T_2^* .

References

- 1) Sitharaman B., Kissell K. R., et al. *Chem. Comm.* 2005;(31), 3915-7.
- 2) Unpublished results for T_2^* .
- 3) Ashcroft, J.M., Hartman, K. B., et al. *Nanotechnology*. 2006; 17, (20), 5033-7.
- 4) Pankhurst, Q.A., Connolly, J., et. al. *J. Phys. D: Appl. Phys.* 2003; (36), R167-81.
- 5) Suominen, T., Raittila, J., et. al. *J. Magn.* 2007; 309(2), 278-84.