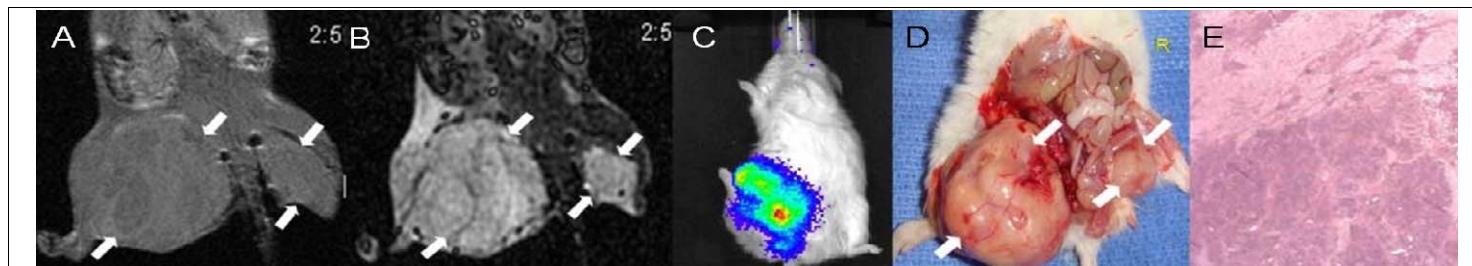
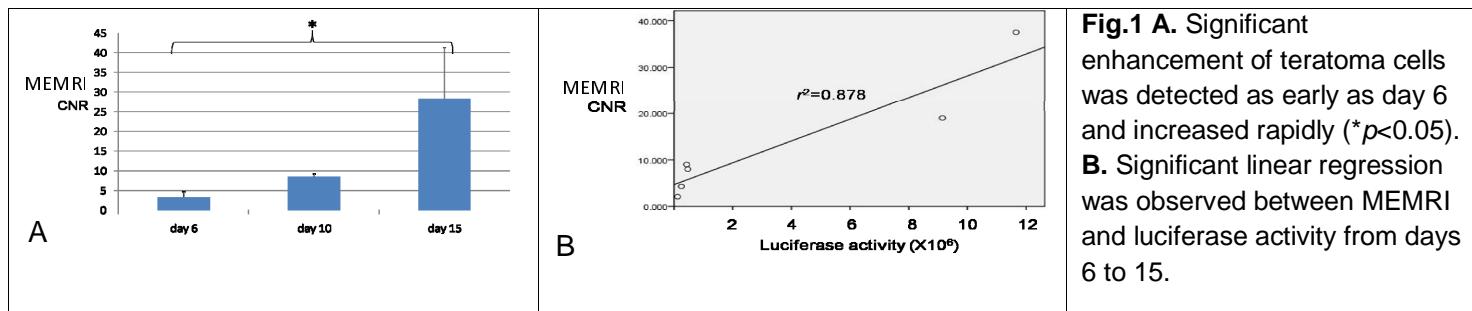


Early *in vivo* manganese-enhanced MRI (MEMRI) detection of embryonic stem cell induced teratoma formation

J. Chung¹, J. K. Barral², I. Weissman³, R. C. Robbins⁴, and P. C. Yang¹



¹Cardiovascular Medicine, Stanford University, Stanford, CA, United States, ²Electrical Engineering, Stanford University, Stanford, CA, United States, ³Pathology, Stanford University, Stanford, CA, United States, ⁴Cardiothoracic Surgery, Stanford University, Stanford, CA, United States

Background: Embryonic stem cell (ESC) therapy has shown to restore and regenerate damaged tissue. However, one significant complication of ESC therapy is teratoma formation. In order to address this issue, a sensitive *in vivo* imaging method to detect teratoma at an early stage is necessary. Manganese (Mn^{2+}) enters metabolically active cells through voltage-gated calcium channel and subsequently induces T_1 shortening effect. We hypothesized that *in vivo* manganese-enhanced MRI (MEMRI) can selectively enhance the ESC induced teratoma cells due to their higher metabolic activity and resultant higher intracellular concentration of Mn^{2+} relative to the normal surrounding cells.

Method: 1.5×10^6 of firefly luciferase transduced mESC (mESC-RG) were transplanted into a SCID mouse right hindlimb. The same number of non-transduced mESC was injected into the left hindlimb ($n=6$). Longitudinal *in vivo* evaluation by MEMRI and bioluminescence imaging (BLI) was performed on post-transplant days 2, 4, 6, 8, 10, 15 and 21. For MEMRI, 1 mL of 10mM manganese chloride solution was injected intraperitoneally. Both hindlimbs were scanned using Signa 3.0 T Excite HD scanner (GE Healthcare system, Milwaukee, WI) with customized surface coil using T_1 weighted spin echo inversion recovery (SE IR) sequence: TR 600 ms, TE 5 ms, TI 80-120ms, NEX 2, FOV 3, 128X128, slice thickness 0.5 mm. For BLI, 150mg/kg of d-luciferin was injected intraperitoneally and luciferase activity was measured for 30 minutes at 5 minute acquisition interval using IVIS spectrum (Xenogen, Alameda, CA). At post-transplant days 6, 15, and 21, 2 mice were sacrificed for histological evaluation.

Results: MEMRI detected teratoma cells as early as day 6 while positive luciferase activity was seen on day 5 (Fig. 1A-B: PLEASE REPLACE THE LABEL FOR Y-AXIS FROM CNR TO MEMRI CNR). All SCID mice formed teratoma in both hindlimb (Fig. 2A). Teratoma cells from mESC-RG and mESC were detected by MEMRI (Fig. 2B). This abnormal proliferation of mESC-RG was validated by BLI (Fig. 2C). Gross section of teratoma correlated with *in vivo* MRI and histology confirmed pluripotent cells of mESC induced teratoma (Fig. 2D-E).

Conclusion: MEMRI enabled early and robust *in vivo* detection of abnormal pluripotent proliferation of teratoma cells.

Fig.2.A. Pre- Mn^{2+} injection *in vivo* MRI of teratoma (white arrows), **B.** Post- Mn^{2+} injection *in vivo* MRI demonstrating significant contrast enhancement in the teratoma cells (white arrows), **C.** *In vivo* BLI validates MRI findings, **D.** Gross section shows corresponding teratomas (white arrows), and **E.** Histology confirms pluripotency of teratoma.