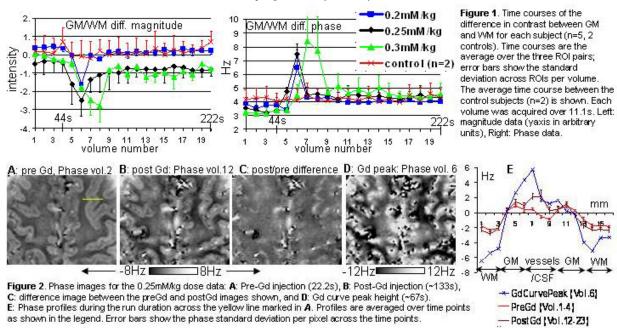
The role of intravascular effects in phase contrast between Gray and White Matter

N. Petridou¹, S. J. Wharton¹, A. Lotfipour¹, P. Gowland¹, and R. Bowtell¹

¹SPMMRC, University of Nottingham, Nottingham, United Kingdom


Introduction: Recent studies have shown dramatic contrast between gray (GM) and white (WM) matter in MR phase images [1-3]. Several sources for this contrast have been proposed including tissue iron concentration, myelin, water-macromolecule interaction, and deoxy-hemoglobin [1-3], but the issue remains under investigation. Here we examine the contribution of blood-related sources to this contrast by modulating the blood susceptibility with a gadolinium-based contrast agent during time-series phase imaging.

Methods: Time courses were acquired at 7T using a 16-channel RF head coil (Nova Medical, MA) and a flow-compensated 3D segmented EPI sequence (EPI factor = 27; SENSE factor = 2) with TR/TE: 50/20ms, flip-angle: 16⁰, FOV: 208x168mm, 1mm³ isotropic resolution. 16-25 volumes consisting of 40 axial slices spanning the corpus callosum were acquired per experiment, with an acquisition time of 11.1s per volume (~178-278s/experiment). A dose of either: 0.2, 0.25, or 0.3 mM/kg of ProHance (Gadoteridol; Gd) diluted in saline was administered manually appx. 44s after the start of scanning, in 3 subjects. Two control subjects were also scanned with no injection of contrast agent. Phase data were unwrapped using FSL (FMRIB, Oxford) and then high-pass filtered to eliminate large length-scale field variation. Subsequently, both magnitude and phase data were motion corrected and further processed using AFNI (NIMH/NIH). The contrast between GM and WM was computed for ROIs obtained in pure GM (away from large vessels) and proximal WM (~2-3mm separation) in the frontal, motor and parietal areas, for each time-point. Three pairs of GM/WM ROIs (5 voxels/ROI) were assessed per subject. Phase values were scaled by 2πTE to convert to field offsets in Hz.

Results: The GM/WM phase difference ($\Delta\phi_{GW}$) time courses for each subject, averaged over the 3 pairs of ROIs, are shown in Figure 1. The pre-Gd-injection $\Delta\phi_{GW}$ across subjects was 3.75±0.44Hz consistent with published results [1-3]. The $\Delta\phi_{GW}$ increased significantly during the first-pass of the Gd-bolus through the vasculature, showing a change that increased with Gd dose, but showed only a small deviation from pre-Gd values after recirculation and mixing. The difference in $\Delta\phi_{GW}$ between the post-Gd and pre-Gd values, over the 3 pairs of ROIs, was 0.4±0.4Hz, 0.95±0.3Hz, and 1.35±0.88Hz for the 0.25, 0.25 and 0.3 mM/kg dose respectively. During the first-pass of the Gd-bolus there was a reduction in the magnitude signal from GM, and a smaller reduction persisted after mixing. The signal plots from the control subjects indicate the stability of the data. Figure 2 shows phase images obtained before and after Gd injection, and at the Gd-bolus curve peak, along with the post/pre difference image, for the 0.25mM/kg dose. A line profile showing the phase variation across a sulcus is shown in E. This indicates again that $\Delta\phi_{GW}$ is slightly increased from the precontrast value after the first-pass of the Gd-bolus, while the phase difference between the GM and central CSF/veins remains significantly elevated after mixing.

Discussion: The finding that the $\Delta \varphi_{GW}$ returns to a level similar to the pre-contrast value after mixing, while the phase difference between GM and the vasculature remains enhanced, indicates that the elevated susceptibility of blood due to the "steady state" (\geq 200s) concentration of contrast agent is not large enough to perturb the GM/WM susceptibility difference significantly. Based on the subject's weight we estimate that the Gd concentration in the blood in the steady state is about 4.2 mM for the 0.25 mM/kg dose, which yields a blood susceptibility change due to Gd of 1.4 ppm, assuming that $\Delta \chi_{Gd}$ = 3.4x10⁴ per mole/I (SI units) [4]. This change is more than three times larger than the susceptibility difference between venous blood and tissue, estimated as 0.36 ppm [4]. Increasing the susceptibility difference between venous blood and tissue by more than a factor of three (and that of arterial blood and tissue by a much greater factor) can thus be seen to have no significant effect on the GM/WM susceptibility difference, and therefore it can be stated that the measured difference of susceptibility in these tissues is not explained by the effect of deoxyhaemoglobin in blood.

References: [1] JH Duyn et al. PNAS 104(28): 11796-801, 2007; [2] K Zhong et al. NeuroImage 40: 1561–1566, 2008; [3] Haacke et al. MRM 23:1-25, 2005; [4] Weisskoff et al. MRM 24:375-383, 1992. The 7T programme is funded by the MRC and Wellcome Trust

