A new approach to fully automated fiber tract clustering using affinity propagation
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I ntroduction
Fiber tractography (FT) is increasingly being used to investigate the 3D organization and microstructural properties of white matter (WM) fiber bundles as an alternate
approach to the more conventional labor-intensive region-of-interest (ROI) based analyses to reduce subjective biases when extracting diffusion parameters [1-3].
Although atlas-based approaches have been introduced to minimize operator dependency of seed and selection ROIs for these tract-based analyses [4-7], they rely on
coregistration accuracy, definition of anatomical atlas labels, and inter-subject consistency. To improve the reliability of reconstructing WM fibers of interest, several
automated fiber tract bundling methods have been proposed, based on k-means, hierarchical, spectral, expectation-maximization, and shape-based clustering algorithms
[8-12]. In this work, we present a novel approach to fiber tract clustering approach on the recently introduced concept of ‘affinity propagation’ (AP) [13]. In contrast to
other clustering methods, AP clustering allows one to (i) produce tract exemplars; (ii) incorporate asymmetric tract distance measures (e.g., Hausdorff metric); and —
importantly — (iii) determine the number of clusters automatically. Here, we demonstrate 1) the superior performance of AP over spectral and hierarchical clustering
methods and 2) how the AP method improves atlas-based tract segmentations.

Methods

Data acquisition & post-processing: Five cardiac-gated DT-MRI data sets (2.4 mm isotropic resolution) were collected (one per week for 5 weeks) from a healthy
volunteer on a GE 3 Tesla MR system using a gradient sampling scheme of 6 non-diffusion-weighted (DW) images and 60 DW images (b=1200 s/mm®) in which the
gradients were uniformly distributed over the sphere [14]. The tensor was fitted using non-linear regression and deterministic streamline tractography was used to
reconstruct WM fiber pathways [15, 16].

AP clustering of tracts: In summary, AP is a new, completely unsupervised clustering algorithm that can be viewed as the max-product algorithm in a graphical model
describing the mixture model [13]. It takes as input a distance similarity (‘affinity’) between pairs of tract pathways and simultaneously considers all data points as
potential exemplars. Real-valued messages are iteratively exchanged between these data points (‘propagation’) until a high-quality set of exemplars and corresponding
clusters gradually emerges (a detailed/technical description of this method can be found in ref. [13]). As shown in [10], the symmetrical mean distance between pairs of
closest points is a robust metric to calculate the distance between each pair of fiber pathways and is therefore also used here for both the AP, spectral (as described in
[10]), and hierarchical (single-linkage, agglomerative as described in [11]) clustering approach.

1) Reproducibility: as an example, for each data set (S, , n=1,...,5), the right uncinate fasciculus (UNC) was reconstructed, based on the protocol described in [17] (and
shown in Fig.1, A). Subsequently, clustering of the UNC was performed to differentiate the medial and lateral components of the UNC (Fig.1, B-D).
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Results

Visual assessment of the pair
wise tract affinity  matrix
(reordered after clustering) in
Fig. 1 (B-D) clearly demonstrates
that AP clustering provides the
most reproducible results. Note
that the hierarchical clustering
suffers from ‘tract outliers’ in the
data. After performing full brain
fiber tractography (Fig. 2, A) and
defining the ‘AND’ and ‘NOT’
regions in the fiber tract selection
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Discussion and conclusion
Previously, it has been shown that AP clustering can obtain better solutions than expectation-maximization, k-means, spectral, and hierarchical clustering in
applications, such as image segmentation and studying gene expression models [13]. In this work, we used the AP algorithm for fiber tract clustering and demonstrated
results that appear to be more robust than obtained from previously described methods. Although fiber tractography-based analyses may benefit from automated
clustering methods to improve objectivity/reliability of the manual — and often labor-intensive — tract selections, user-induced variability is being replaced by parameter
settings of the applied cluster method. By introducing the AP algorithm for fiber clustering, however, we have solved one of the major issues related to these
parameters: with AP there is no need to predefine the number of clustersa priori.
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