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Introduction

Tractography methods utilize diffusion-weighted (DW) MR images to reconstruct brain white matter tracts, non-invasively and in-vivo. Commonly used tractography
techniques propagate curves within the vector fields of local fibre orientations [1, 2]. Alternatives to these streamline approaches have been developed based on graph
theory, including fast marching [3, 4], shortest path [5] and fuzzy connectedness tractography [6]. These schemes are inherently discrete in the orientation and spatial
fields. However, compared to the streamline schemes and their probabilistic counterparts, graph-based tractography combines a) converged indices of connectivity for
all image voxels [3-6], b) connectivities that do not drop systematically with the distance from the seed [3-6], ¢) inherent ability to incorporate information from other
imaging modalities [5] and d) relatively short execution times [6]. We present here a graph-based distributed tractography method that propagates robustly through
voxels with complex fibre configurations, as these are depicted by the Q-ball orientation distribution functions (ODFs) [7].

Theory and Methods
Graph-based Tractography Theory: An image can be treated as a non-directed graph, with each voxel being a node in the graph and arcs connecting neighbouring
voxels [5, 6]. Each arc is assigned a weight w;; representing the probability of observing diffusion from voxel i to neighbouring voxel j, given the ODFs in these voxels.
Weights can be calculated as the normalized integrals of the ODFs over a solid angle ¢ centred on the vector connecting i and j [5]. A path between any two voxels is a
sequence of arcs connecting them. The strength of a path can be defined as the product of arc weights along its length. The strongest path connecting two voxels can
then be found by exhaustively searching the image graph using, for example, Dijkstra’s algorithm.
Limitations with Complex ODFs: The above approach works well with diffusion ODFs extracted from diffusion tensor imaging (DTI) [5]. However, there is an inherent
problem when dealing with complex multiple-peak ODFs extracted from Q-ball data. In the example shown in Figure la, once a path reaches voxel A within the
crossing region, it can equally likely propagate towards both crossing tracts, regardless of its origin. This can easily cause unrealistic path strengths and path
propagation; note that the results of the ODF-driven fast marching tractography [4] will also be influenced by the same factor. The problem can be partially masked by
the discrete nature of path propagation and the utilization of a maximum curvature threshold, as used in [5]. However, such threshold does not always work, as shown in
the simple simulations of Figure 2a, where the strengths of the paths arising from a seed ROI within the horizontal tract are plotted for various crossing angles.
Multiple Voxel Instance Graph-based Tractography: In order to resolve such conditions, we assume that complex ODFs corresponding to N crossing populations can be
decomposed to N simpler ODF components, each representative of a different population. Then, a voxel is represented in the image graph by N instances, one per
population. Weights wy; are defined between the k™ fibre population of voxel i and the I population of voxel j and are calculated by integrating the k" and /™ ODF
components of voxels i and j respectively. Using dynamic programming we test all the possible combinations and depending on the seed location let the appropriate
ones dominate. For example, for the case of Figure 1a, the dominant configuration will be the one of Figure 1b (Figure 1c) if voxel B (voxel C) is used as a seed.
a) ! /) / b) ! )/ o / ODF Decomposition: We decompose the diffusion ODF using the deconvolution approach of [8]. A
! ) ]/ /) ]/ ! ) ]/ single fibre ODF kernel is calculated from the 300 most anisotropic voxels of the brain. Using this
—=== | mean kernel, the diffusion ODF is deconvolved to a fibre ODF (fODF). The peaks of the fODF are
/C} B eee= [ [ [ ==== | determined using finite differences. Assuming that each peak n corresponds to a different crossing
== | fibre population, the ODF kernel is rotated to the peak orientation to represent the n" component of
AJ [ {4 {7/ the original ODF. When only one peak is found, the original ODF is kept, thus allowing single-fibre
i 44 {17 ICl ] fanning configurations that have a broader ODF to be treated appropriately.

Figure 1 Data Acquisition and Processing: Five healthy subjects that gave informed consent were scanned
using a single-shot EPI DW sequence (in-plane resolution 2x2 mm?, 2 mm slice thickness, parallel imaging factor=2) in a Philips 3T Achieva clinical imaging system.
Six non-DW and 61 DW images [9] were acquired at b=3000 s/mm’. Images were corrected for eddy current distortion and Q-ball ODFs were reconstructed using
spherical harmonics (Imax=6) and Laplace-Beltrami regularization [8]. The graph weights were calculated using a 3x3x3 neighbourhood and a solid angle ¢=2m/26. A
maximum number of N=3 components were allowed in each voxel. All voxels with an FA>0.15 were considered for tractography.

Results and Discussion

Figure 2 presents simulated results for different crossing angles (60°-90°), when the graph-based tractography (GT) of [5] (Figure 2a) and the multiple voxel instance
graph-based tractography with ODF decomposition (MVIGT) (Figure 2b) is used. The strengths of the paths arising from a seed ROI placed at the leftmost edge of the
horizontal tract are plotted. The problem discussed above is evident especially for a 70° crossing, when mixing between the two tracts occurs. For a 60° crossing, due to
increased perpendicular diffusivity, the ODF integration results to a higher weight for the diagonal neighbour than for the neighbour to the right. Therefore, the wrong
tract is favoured. On the other hand, MVIGT propagates most strongly along the correct tract in all cases.

Figure 3 shows coronal maximum intensity projections of path strengths superimposed on FA maps, when a) GT and b) MVIGT are used with a seed ROI in the body of
the corpus callosum (CC). Strengths smaller than 0.2 are cropped to aid visualization. We can observe how the specificity of the path strengths is increased through the
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multiple orientations the one closest to the propagating trajectory is chosen. We apply a similar idea to

when using MVIGT.
We have presented a distributed graph-based
tractography method that robustly propagat-

es through complex fibre configurations. Our

method effectively borrows the idea of

Figure 2 graph-based tractography, without, however, having to select a fibre population. We instead try all the

possible combinations and let the best -given the trajectory so far- dominate. In this implementation, we have used a common Gaussian ODF kernel throughout the
brain. Even if the kernel is estimated from the data, we do not expect to be representative of all voxels. Different Gaussian kernels can be estimated on a voxel by voxel
basis, by fitting multiple cylindrically symmetric tensors, as in [10, 12] and we are currently working towards this direction. Furthermore, fODF instead of diffusion
ODF kernels can be used, the former being more representative of the actual fibre configurations [8].
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b) Figure 3 tractography [10, 11], where in voxels with
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