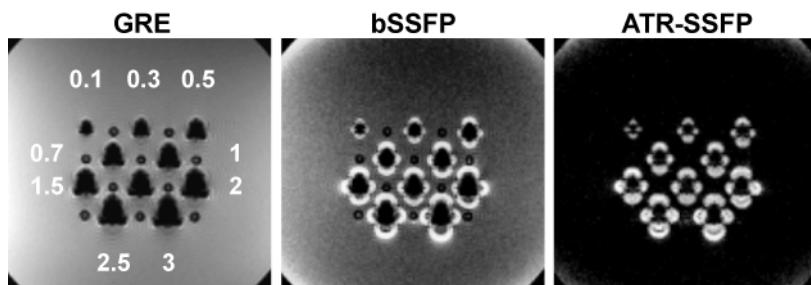
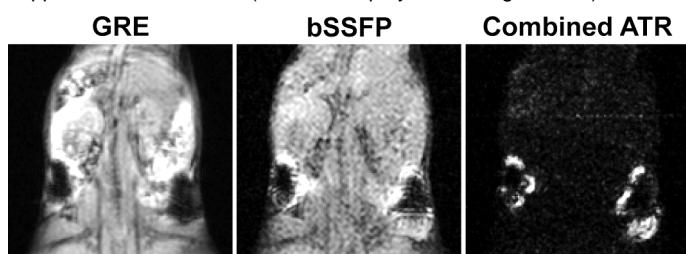


Fast Positive-Contrast Imaging of SPIO-Labeled Cells with Low-Angle Alternating-TR SSFP

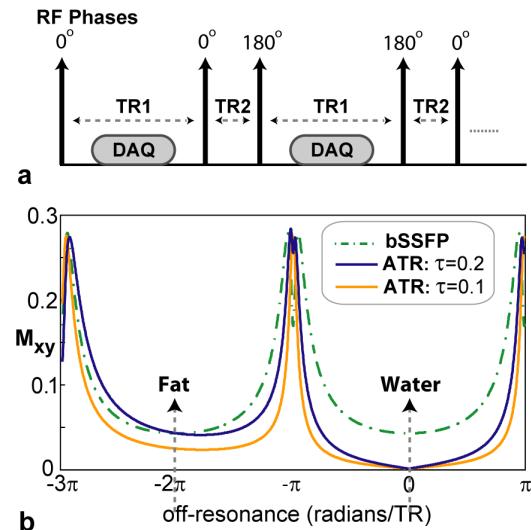
T. Çukur¹, M. Yamada², W. R. Overall¹, P. Yang², and D. G. Nishimura¹

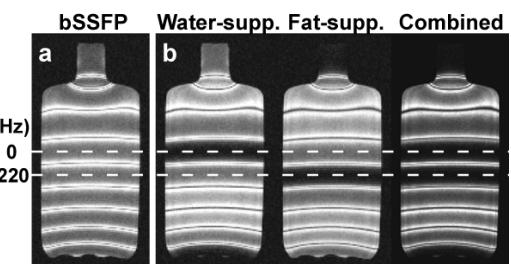

¹Electrical Engineering, Stanford University, Stanford, California, United States, ²School of Medicine, Stanford University, Stanford, California, United States

Introduction: Positive-contrast imaging of super paramagnetic iron oxide (SPIO)-labeled cells avoids problems associated with negative contrast such as other signal voids and partial volume effects [1-7]. Many techniques offer 2D imaging with thick slices and long scan times. A fast 3D alternating repetition time (ATR) SSFP [8] method with reliable on-resonant suppression has recently been introduced with preliminary phantom results [7]. In this work, we further analyze the signal characteristics, perform sensitivity experiments, propose a new technique to suppress fat in addition to the on-resonant signals, and present *in vivo* results.


Methods: The low-angle bSSFP profile has off-resonant peaks and reduced on-resonant signal [6]; however, the level of suppression is limited. We have proposed the use of ATR SSFP, which alternates between two TRs (TR1, TR2) to create a stop-band with a perfect central-null regardless of the tip angle and T1/T2 (Fig. 1). The level of suppression can be further improved by reducing $\tau = \text{TR2/TR1}$, at the expense of reducing the range of frequencies contributing to positive contrast. Finally, the water-suppressed ATR image can be combined (through multiplication) with a fat-suppressed image acquired by shifting the stop-band to the fat resonance (Fig. 2). At the expense of slightly reduced SNR and spatially-varying noise, this combination reliably suppresses both water and fat signals.

Results: 3D GRE, bSSFP, and ATR images were collected on a 1.5 T GE scanner, with a knee coil (phantom) and a 3-inch coil (in vivo). For the GRE sequence: $\alpha=30^\circ$, TR=20 ms. The parameters for bSSFP and ATR were: TR=4.8 ms, 10 cm FOV, $0.6 \times 0.6 \times 0.8 \text{ mm}^3$ resolution, and a scan time of 0:32 s for both. For the phantom scans, $\alpha=15^\circ$, $\tau=0.15$; and for the *in vivo* scans, $\alpha=5^\circ$, $\tau=0.07$. Agar phantom images with varying concentrations (0.1 to 3 millions) of SPIO-labeled human stromal cells demonstrate the enhanced on-resonant suppression of ATR (Fig. 3). *In vivo* data were collected after injecting 1.5 and 3 million cells into the hind limbs of mice (Figs. 4,5). The background signal is robustly reduced when the water- and fat-suppressed ATR images are combined.


Conclusion: The low-angle ATR SSFP profile was manipulated to generate high-signal from SPIO-labeled particles while reliably suppressing the on-resonant and fat signals. The proposed method provides high-resolution fast positive-contrast imaging as demonstrated with the phantom and *in vivo* experiments.


Figure 3. A phantom with varying concentrations (in millions) of SPIO-labeled cells was imaged with GRE, bSSFP and ATR. ATR achieves superior background suppression than bSSFP (identical display windowing for both).

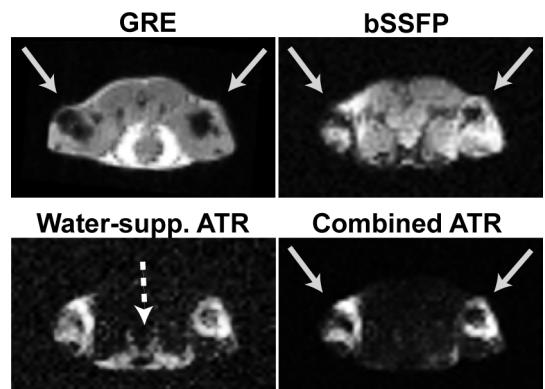

Figure 5. Coronal projections (over 4 slices) from another mouse scan. ATR achieves superior background suppression than bSSFP.

Figure 1. a: The ATR sequence diagram, where $\tau = \text{TR2/TR1}$. b: Magnetization profiles ($T_1/T_2=3$) at $\alpha=5^\circ$ for bSSFP and ATR ($\tau=0.2, 0.1$).

Figure 2. Water phantom with a vertical field gradient. ATR (b) suppresses water (0 Hz) better than bSSFP (a). We can shift this stop-band to -220 Hz for fat suppression. Finally, the two ATR images can be combined to reduce both signals.

Figure 4. Axial slices from GRE, bSSFP, and ATR images of a mouse injected with SPIO-labeled cells into hind limbs (arrows). bSSFP cannot achieve sufficient background suppression. Water-suppressed ATR image yields residual fat (dashed arrow). The combined ATR image has reliable positive contrast.

References:

1. Seppenwolde, MRM 50, 2003.
2. Cunningham, MRM 55, 2005.
3. Heyn, MRM 53, 2005.
4. Bulte, NMR in Biomed 17, 2004.
5. Mani, MRM 55, 2006.
6. Dharmakumar, Phys Med Biol 51, 2006.
7. Cukur, *et al.* ISMRM, 2008.
8. Leupold, *et al.* MRM 55, 2006.