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Introduction   
Characterization of tumor location and extent in prostate cancer (PCa) is essential for accurately targeting focal therapies, and may also affect patient 
management decisions during active surveillance.  MRI provides the opportunity to image both anatomy and multiple physiologic properties in the same 
session.  The use of multiple MRI modalities to optimize PCa localization is an active area of study [1-4]; however, interpretation of multi-parametric 
datasets presents a number of challenges, both in terms of decision making for resolving conflicting results between modalities as well as workload 
management when review of each image set is required.  Generation of a map, developed as a quantitative combination of parameters, would simplify 
the review process and provide an objective guide for determination of tumor location and boundaries.  Our study includes diffusion weighted imaging 
(DWI), quantitative T2, and dynamic contrast enhanced (DCE) MRI in a radical prostatectomy patient cohort, followed by whole mount pathology.  We 
have explored the optimal combination of parameters for localization of PCa in the peripheral zone (PZ).  
Purpose  To develop a multi-parametric model suitable for prospective tumor mapping using whole mount pathology during model development. 
Materials and Methods 
Twenty-five men with biopsy-confirmed PCa underwent endorectal MRI on a 1.5T GE Excite HD platform prior to prostatectomy.  Ethics board approval 
and informed consent were obtained.  T2-weighted fast-spin echo (FSE) images were acquired, followed by diffusion-weighted imaging (TR/TE = 
4000/77ms, 128x256 matrix, 10 NEX, FOV = 14cm, b = 0,600s/mm2), multi-echo FSE imaging (TR = 2000ms, 10 echo times (9.0-90.0ms), 256x128 
matrix, 1 NEX, FOV = 20cm), and dynamic contrast-enhanced (DCE) MRI (TR/TE = 4.3/1.9ms, 256x128 matrix, 0.5 NEX, FOV = 20cm, α = 20o, 10s 
temporal resolution, 50 phases).  All MRI datasets were obtained at identical slice locations with 3mm slice thickness and no intersection gap.  ADC and 
T2 maps were generated, and a Tofts model [5] with assumed arterial input function [6] was used to calculate Ktrans and ve maps.  The ADC map was re-
sampled to match the resolution of all other images.  Hematoxylin and eosin stained whole mount sections were prepared to match in vivo MRI [7].  PZ 
tumors >3mm were outlined on all slides by a GU pathologist, and the section with the largest cross-sectional area of tumor used in analyses.  All tumors 
were included; thus, multiple slices were used for patients with multi-focal disease (9 in 25 patients).  A region of interest (ROI) in normal PZ was 
delineated by the pathologist.  All tumor and normal ROIs were transferred to MRI.  The significance between median tumor and normal values for each 
parameter in each patient was tested using both unpaired and matched-pair (same-slice tumor and normal ROI) non-parametric tests.  Receiver 
operating characteristic (ROC) curves were generated for each parameter using all ROI voxels.  Bootstrapping was used to determine mean areas under 
the ROC curves (Azs), and to compare performance between parameters.  Feature vectors (FVs) for logistic regression (LR) modeling were generated, 
corresponding to the set of parameter values at each spatial location within each ROI (i.e., a subset of {ADC(i,j), T2(i,j), Ktrans(i,j), ve(i,j)}).  The model was 
optimized by adding parameters step-wise based on decreasing Az, testing each parameter addition for significance and accounting for correlated data 
within patients.  The final model was compared against each parameter.  Bonferroni-adjusted α’s were used for multiple comparison significance tests. 
 Results and Discussion 
Thirty-eight tumors from the twenty-five patients were reviewed.  Median ADC and T2 values in PCa (1.275 x10-3mm2/s and 88.7ms, respectively) were 
significantly lower than in benign PZ (1.467 x10-3mm2/s and 111.6ms, respectively) both overall (P<0.005), and for matched-pair tests (P<0.001).   There 
were no overall differences between tumor and normal values for Ktrans nor ve (PCa and normal: 0.298 and 0.253 min-1 for Ktrans (P=0.168), 0.283 and 
0.290 for ve (P=0.670)); however, in matched-pair tests, median Ktrans values in PCa were significantly higher than normal PZ (P=0.013), and ve values 
showed a trend towards being significantly lower (P=0.069).  6460 voxels were extracted from all ROIs (4152 PCa, 2308 benign).  ADC had the highest 
ROC performance (mean Az,ADC: 0.689), and was significantly greater than Az,Ktrans (mean: 0.592, P<0.002) or Az,ve (mean: 0.543, P<0.002), but not Az,T2 
(mean: 0.673, P=0.026).  Additions of ADC, T2, and Ktrans to the LR-model were significant, with the probability of a voxel being malignant determined as 
Pr=ez/(1+ez), where z=3.176-1378ADC-0.0089T2+0.715Ktrans.  Az,LR (mean: 0.706) was significantly higher than Az for T2, Ktrans, and ve (P<0.002), and 
was higher than Az,ADC, however not significantly (P=0.09).  ROC curves for all parameters and LR-model are in Figure 1.  Our Az values are on the low 
range of those reported (0.66-0.91) [1-4], but reflect the variability in voxel data versus overall detection of a ROI.  Our approach ensures the training set 
reflects input data for mapping, especially in the case where median values in ROIs occur in different spatial locations for each parameter [1].  Although 
there are many multi-parametric methods, LR provides an attractive option; after training, the model can be applied prospectively to new datasets, 
yielding maps of continuous malignant-probability.  Input maps and resulting LR map are shown in Figure 2.  MRI values for central gland (CG) tissue 
differ from PZ, necessitating separate training sets to extend this work to CG.  The limited number of CG tumors in our patient cohort (4 in 25 patients) 
precluded this analysis.  ADC was the best performing single parameter, and although the LR model had a higher Az, the difference was not significant.  
However, the addition of T2 and Ktrans was significant in the model, and may lead to a method to detect PCa with ADC values comparable to normal PZ.    
Conclusion 
We have developed a multi-parametric model incorporating ADC, T2 and Ktrans to create a single quantitative map of tumor probability, which may 
improve localization of cancer in the peripheral zone of the prostate. 
 

 

Figure 2.  Whole mount section (a), 
T2-weighted MRI (b), input parameter 
maps ADC (c), T2 (d), and Ktrans (e), 
and LR map using final model (f). 
(map valid for PZ tissue)  tumor: 
black/solid line, normal: blue/dotted 
line)  The lesion is clearly visible in 
(f), with much of the noise from the 
input datasets removed.  The 
tumor/normal regions identified were 
added to the overall training dataset. 

 
Figure 1.  ROC curves for all parameters and LR-model.  ADC was the top single-parameter; Az,ADC was 
significantly higher than Az for Ktrans, and ve, and greater than T2 (not significant).  LR was significantly better  
than T2, Ktrans, and ve, and greater than ADC (not significant). 
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