Comparison of arterial blood volume obtained from model-free arterial spin labelling (ASL) and cerebral blood volume
obtained from contrast enhanced dynamic susceptibility weighted imaging (DSC) in brain tumours
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Introduction

Cerebral blood volume (CBV) in brain tumours reflects vascularity and can be used to differentiate intracranial tumour types. Measurement of CBV with dynamic
susceptibility weighted imaging (DSC-MRI) requires injection of a contrast agent. As an alternative, a recently introduced, model-free arterial spin labelling technique
(ASL) named QUASAR enables quantification of cerebral blood flow (CBF) and arterial blood volume (aBV) [1]. In this study, aBV and CBF calculated from ASL and
CBYV and CBF obtained from DSC-MRI were determined in three types of brain tumours.

Subjects and Methods

Nine subjects with intracranial tumours (3 grade 2-3 gliomas, 3 glioblastomas and 4 meningiomas, two in one patient) were examined on a 3-T MR unit (Philips
Achieva, Philips Medical Systems, Best, The Netherlands) with ASL (QUASAR) and DSC-MRI (GRE-EPI). ASL images were obtained with crushed arterial signal
using a velocity-encoding gradient (crushed data) as well as with retained arterial signal (non-crushed data); two flip angles were used to obtain equilibrium
magnetization in blood. QUASAR parameters were TR/TE/ATI/TI1=4000/23/300/40 ms, matrix=64x64, seven slices (6 mm thickness/2 mm slice gap), FOV=240 mm,
flip angle=35/11.7°, SENSE factor 2.5, Venc=[® ,4 cm/s], and 82 averages (48 using Venc=4 cm/s, 24 using Venc=x, 10 with smaller flip angle), implemented in a
single sequence. For DSC-MRI, GRE-EPI was used with TR/TE=1360/29 ms, flip angle=90°, slice thickness=5 mm, 23 slices, FOV=220 mm, matrix=128x128 and
SENSE factor 2.5. In both DSC-MRI and ASL, deconvolution was performed using a block-circulant singular value decomposition method [2]. In the ASL data,
arterial signal curves were obtained by subtracting crushed from non-crushed data. aBV was obtained as the time integral of the arterial signal curve divided by the
bolus area that corresponds to an initially labelled voxel with 100% blood volume. Under guidance of morphological information, ROIs of 0.08 cm?® were placed in the
lesion and in healthy grey matter (GM) (approximately 30 cm?) and the ratio was calculated. Grey matter was used as a reference since the signal-to-noise ratio in white
matter is low in ASL.

Results

Figure 1 shows maps of ASL-aBV, DSC-CBV, ASL-CBF and DSC-CBV in a meningioma. Mean results of the ratios from the four measurements and standard
deviations are displayed in table 1. When assuming proportionality between aBV obtained from ASL and CBV obtained from DSC-MRI ratios the correlation was 0.89
(see figure 2). Comparing CBF ratios the correlation was 0.90 (see figure 2).
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Glioblastoma 1.9+1.2 | 5.7#3.7 | 3.4+1.5 | 3.0«1.5

deviation
Meningiomas 2.9+1.2 | 6.84£3.5 6.2+1.7 5.0£2.1
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Conclusions

ASL-aBV correlated well to CBV determined with DSC-MRI (r=0.89) and likewise ASL-CBF and DSC-CBF correlated well (r=0.90).Our results also suggest a
difference in aBV between tumour types (no statistic tests were performed as group sizes were small). As ASL is based on measurement of a diffusible tracer, it does not
allow for determination of CBV. Instead, the blood volume in arteries and arterioles that has a velocity over a predefined threshold (4 cm/s in our case) is measured.
This threshold is to be compared to the velocity in these vessels just proximal to the capillary bed that decreases from 10 cm/s to 0.2 cm/s suggesting that the arteries
and most of the arterioles are included in measurement of aBV. Furthermore, in DSC-MRI a vascular artefact is often present that elevates CBV and CBF in the vessels
and thus CBV obtained from DSC-MRI consists of aBV and venous blood volume from the large vessels and CBV from the tissue.

We conclude that aBV is a potential tool for characterisation of intracranial tumours, of special clinical interest as its measurement is non-invasive.
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