Anomalous shear wave propagation reveals micro-ar chitectural properties- potential implicationsfor diagnostic imaging -
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Introduction: Biological tissue exhibits power-law behaviour for the complex shear modulus in the range of 0.01-1000Hz, i.e. G*=Gd+iGl rises with
frequency according to 0)2_7 [1]. Various rheological models have been developed in order to explain this type of dispersion [2]. Here, we present an
entirely new physical approach in order to explain the observed frequency behaviour: it is shown that shear wave propagation is sensitive to the
underlying spatial micro-architecture of obstacles which hinder the propagation. This effect is very similar to the well established effect of anomalous
diffusion for particles: typically, in a diffusion process, the mean squared displacement (msd) of a particle is a linear function of time,
ie. R(t) ~ t}//z with y=1. Anomalous diffusion is used to describe a diffusion process with a non-linear dependence on time which occurs when space
is restricted and there is an intimate link between the spatial architecture of the restriction and the exponent y for the msd [3]. Recently, this anomalous
propagation has also been found for light [4] and it is shown for the first time in this work that similar behaviour holds for shear wave propagation.

Methods: 2D simulations of propagating shear waves are carried out with the
FEM software package DIFFPACK®. A point source (located at the lower end
of the vertical yellow lines in Fig.A,B) generates one period of excitation at
100Hz. The propagation is disturbed with either single-scale (ss) or multi-scale
(ms) circles with a strong rupture in acoustic impedance (1000). The ballistic
wave front R is traced as a function of time in order to recuperate its
temporal behaviour. Transient shear wave propagation experiments in gelatine
phantoms are carried out on a 7T Bruker animal system. A CINE FLASH
sequence sensitized to 200Hz motion is synchronized to a piston which
pushes at 200Hz for one period on the phantom surface (Fig.D). Thereby, the
propagation of transient shear waves in different types of phantoms can be
studied (i.e. via the addition of glass spheres of one single diameter or of
various different diameters to the gelatine). B-scans (Fig.E,F) along the line of
wave propagation (red line in Fig.D) allow now to trace the ballistic wave front
and to study its temporal behaviour. In-vivo clinical MR-elastography data
were obtained from 99 patients that had undergone liver biopsy for suspicion
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due to the presence of the ms obstacles (Fig.B) when compared to the case of . . ) A .
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ss obstacles (Fig.A, red dashed horizontal line). When tracing the wave front in scale (ss) structure (A) and a multi-scale (ms) structure (B).
time (Fig.C) we find that the ss simulation (blue line) yields as exponent y=2 C:Trace of the ballistic wave front R(t) as a function of time for
(i.e. normal propagation) while the ms simulation (red line) yields y=1.6, i.e. ~ cases A (blue line) and B (red line). D: Transient shear wave
anomalous propagation. Thus, the wave is slowed down while propagatin image in & ss phantom at 200Hz. B-scans in ss phantom (E) and
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Similar behaviour is found in the phantom experiments. The B-scans (Fig.E=ss lesions (H) in power-law representation, i.e. y versus cj.
and Fig.F=ms) clearly show that the ss case yields a linear behaviour for the
ballistic wave front while for the ms case anomalous propagation is observed (curved red line in Fig.F as compared to the straight black line). Liver
fibrosis data (Fig.G) show that disease progression is versus lower o, values (i.e. versus a stiffening of the liver) but y does not change. Breast cancer
data (Fig.H) show an increase in y which correlates with the aggressiveness of the lesion (y**""=0.16, y°©°=0.17, y*'=0.19, y*?=0.25, y**=0.28).
Discussion: It is shown that power-law dispersion of shear waves can origin from multi-scattering effects on sub-wavelength structures exhibiting a
strong rupture in acoustic impedance (like glass beads in gelatine or blood vessels in case of tissue). Simulations indicate (similar to the effect of
anomalous diffusion) a close link between spatial structure of obstacles (for instance their fractal dimension) and the anomalous propagation coefficient
v. Liver fibrosis leads to a stiffening of the organ (and thus a drop of o [5,6]) but no significant change in y. The addition of collagen in case of fibrosis is
not sufficient to modulate the scattering process (small rupture in acoustic impedance). In case of breast cancer, where strong neo-vascularization is
present in aggressive lesions, we observe a significant change in y because the vessel walls are about 1000x stiffer than the ECM (GPa vs KPa). Thus,
anomalous shear wave propagation allows revealing sub-resolution architectural properties of strong scattering objects and might thereby provide
unique information about the vascular architecture of tumours at the clinical imaging scale.
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