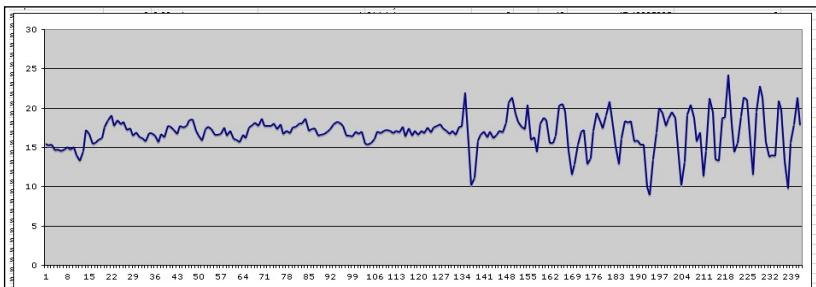


Functional Monitoring of Small Bowel Motility: Comparison of Spasmolysis Induced by Glucagon or Buscopan

J. M. Froehlich¹, M. Daenzer¹, C. von Weymarn¹, S. M. Erturk², C. L. Zollikofer³, and M. A. Patak¹

¹Institute of Radiology, Inselspital, University Hospital, Bern, Switzerland, ²Dept of Radiology, Sisli Etfal Hospital, Istanbul, Turkey, ³Institute of Radiology, Kantonsspital, Winterthur, Switzerland


Fig. 1: Coronal 2D T1-w GRE of the small bowel on which the measurement points were defined and propagated.

(Gadoterate, Dotarem, Guerbet, France) and ispaghula fibres (Metamucil, Proctor and Gamble, Ohio, USA) 0.2g/kg body weight, dissolved in 1200ml tap water, which was ingested over a period of two hours prior to the exam.

The study was performed on a 1.5 T MR unit (Intera Achieva, Philips Medical System, Best, The Netherlands), using a 4-channel SENSE phased array body surface coil. Imaging was performed in apnea and in prone position. Monitoring of motility [3] was performed with a coronal 2D T1-weighted gradient-echo sequence: TR 2.7, TE 1.3 ms, flip angle 45°, FOV 500 mm, rectangular FOV 95%, slice thickness 10 mm, matrix 192 x 512, SENSE factor = 2 with a single slice-assessment time of 0.25 s.

First, normal motility was recorded over approximately three minutes repeating the above mentioned sequence with duration of 30 sec in apnea. At the end of the "baseline sequence", either 40 mg of HBB or 1 mg of glucagon were injected intravenously. A 2D sequence was applied with a scanning time of 40 sec, again in apnea followed by a 20 sec break to breathe. Then repeatedly a sequence was performed with a scanning time of 20 sec, followed by a 40 sec pause to breathe, prolonged after 20 min to 100 sec for a total time of 60 min.

For evaluation well distended segments on five different locations (proximal and distal jejunum, proximal, middle and terminal ileum) were chosen (Fig. 1). Measurements were done orthogonally to the long axis of the small bowel resulting in cross-sectional diameters. Measurement locations were defined on the first slice, then propagated through the complete stack and adjusted on each slice in order to correct for displacement. The measurements were plotted over time separately for each volunteer, each drug and for each location (Fig. 2). These plots were evaluated in consensus by two blinded readers for baseline motility frequency, onset time of paralysis, reappearance of the first small bowel motility defining also the time period of complete arrest and finally time delay until motility normalized. The statistical analysis was done using the paired Student's T-test. A p-value < 0.05 was considered to be statistically significant.

Fig. 2: Small bowel motility after spasmolysis with 40 mg buscopan injected intravenously: Example of a cross-section luminal diameter plotted over time covering 60 min of follow-up. Note the rapid onset of effect and first movements after about 9.8 min with return to normal motility shortly after.

Parameters	HBB (Buscopan®)	Glucagon	p-Value
Baseline frequency [contractions per min]	8.5 ± 2	8.5 ± 1.5	0.91
Onset of effect [sec]	22.2 ± 37.5	13.4 ± 9.2	0.1
First movement [min]	6.8 ± 5.3	18.3 ± 7	< 0.0001
Most frequent location of first movement	Jejunum	Terminal ileum	
Delay to normalisation [min]	23 ± 14.9	33 ± 6.1	0.08
Terminal frequency [contractions per min]	9.5 ± 1.7	9.7 ± 1.8	0.45

Tab. 1: Overview of quantitative results with statistical analysis.

no significant difference (p=0.08) was measured between the two drugs for the return to normal motility (Tab 1).

Conclusion:

In conclusion, MR is a reliable and reproducible method to assess, quantify and analyze small bowel motility and to demonstrate the effect of spasmolytic drugs on its peristalsis. For the pharmacological evaluation and the resulting imaging consequences, Glucagon seems to be favorable for cross-sectional imaging compared to Buscopan. Both have the same fast onset of effect, but is more reliable with Glucagon. Furthermore with Glucagon, the complete arrest of bowel motion is roughly three times longer than with Buscopan.

References: [1] Marti-Bonmati L et al., Abdom Imaging 1996; 21: 309-13 [2] Wagner M. et al. Acta Radiol 2008; 49: 376-82 [3] Froehlich JM et al., JMRI 2005; 21: 370