

Noninvasive Monitoring of CCl₄ Induced Acute and Chronic Liver Damage in Rat by SQ and TQF 23Na MRI

Y. Gao¹, J. James¹, and N. Bansal¹

¹Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States

Introduction

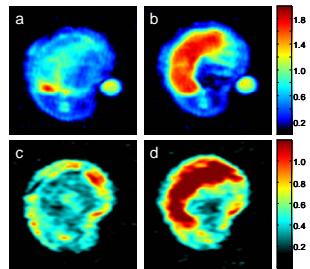
Liver diseases are the eighth leading cause of death in the United States, and are expected to become an even more significant problem because of our aging population, obesity, diabetes, and alcohol consumption. The ability to noninvasively detect and monitor the severity and progression of liver diseases, especially chronic liver diseases, is a major priority in clinical area. The transmembrane sodium gradient plays many important roles in normal hepatocellular function, and could be disrupted in disease states due to compromised cellular integrity and energy status. The current study evaluated the ability of single quantum (SQ) and triple quantum filtered (TQF) ²³Na MRI techniques to monitor the severity and progression of liver injury by acute and chronic CCl₄ intoxication of rats. In addition, shift reagent (SR)-aided ²³Na and ³¹P MRS techniques were employed to examine the mechanisms behind the changes in SQ and TQF ²³Na MRI following CCl₄ intoxication.

Methods

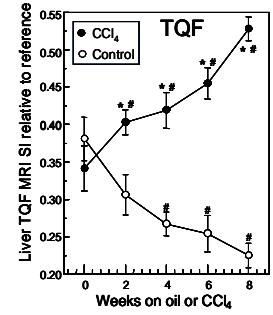
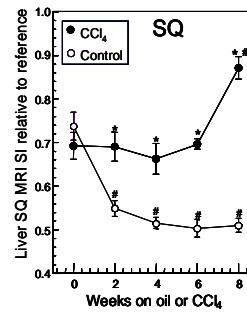
In acute liver damage model rats were given a single oral dose of 5 ml/kg body weight (BW) of CCl₄ and corn oil mixture (ratio 1:1). SQ and MQF ²³Na MRIs were acquired before and 24 hours after the treatment. In the chronic liver damage model, rats were given 1 ml/kg BW of CCl₄ and corn oil mixture (ratio 1:1) orally twice per week for eight weeks. ²³Na MRIs were acquired before treatment and every two weeks during the treatment. All MRI and MRS experiments were performed with a Varian 9.4T 31 cm horizontal bore system. A 50 mm slotted tube resonator tuned to 106 MHz was used for SQ and TQF ²³Na MRI. A 10 mm diameter tube containing 50 mM NaCl was placed inside the coil. The liver SQ and TQF ²³Na signal intensities (SIs) are reported relative to the reference. SQ ²³Na MRI was acquired with a 3D gradient-echo (GE) imaging sequence and the following parameters: ~180 μ s non-selective excitation radio-frequency (RF) pulse, 50 ms repetition time (TR), 4.6 ms echo time (TE), 64x64x16 data points over a 60x60x30 mm FOV, and 10 min data collection time. TQF ²³Na MRI was acquired using a 3-pulse TQ filter followed by a GE imaging sequence. A preparation time of 4.5 ms and an evolution time of 10 μ s were used. The other imaging parameters were the same as used for SQ ²³Na MRI, except a TR of 100 ms and a data size of 64 x 32 x 8 were used. SR-aided ²³Na and ³¹P MRS experiments were performed after the MRI experiments to measure the relative intra- and extracellular spaces (rECS and rECS, respectively) and intra- and extracellular Na⁺ concentrations ([Na_i⁺] and [Na_e⁺], respectively). Rats were surgically prepared for TmDOTP⁵⁻ infusion through the jugular vein and placement of the surface coil over the exposed liver. A surface coil (ϕ = 2 cm) tunable to 106 MHz for ²³Na and 163 MHz ³¹P spectra was used. After the MRS experiments, rats were sacrificed and the liver tissue was fixed for histological examination.

Results

Representative trans-axial sections from 3D SQ and TQF ²³Na MR images of the rat liver before and 24 hours after the acute CCl₄ treatment are shown in Figure 1. The average SQ ²³Na SI of the rat liver relative to the reference increased from 0.60 \pm 0.03 to 1.10 \pm 0.02 (p <0.05) and TQF ²³Na SI increased from 0.35 \pm 0.11 to 0.96 \pm 0.12 (p <0.05) 24 hours after CCl₄ treatment. The changes in SQ and TQF ²³Na MRI SI for the control and chronic CCl₄ treated rats over the 8-week period are shown in Figure 2. For the control group the average SQ ²³Na SI decreased from 0.77 \pm 0.05 to 0.51 \pm 0.02 (p <0.05) and the average TQF ²³Na SI decreased from 0.37 \pm 0.08 to 0.23 \pm 0.02 (p <0.05) over the 8 weeks. For the chronic CCl₄ treatment group SQ ²³Na SI remained relatively constant from week 0 (0.69 \pm 0.03) to week 6 (0.70 \pm 0.01) but afterwards increased to 0.87 \pm 0.03 (p <0.05) on week 8. At the same time, the average TQF ²³Na SI progressively increased from 0.32 \pm 0.03 before CCl₄ treatment to 0.40 \pm 0.02 at week 2, 0.42 \pm 0.02 at week 4, 0.46 \pm 0.02 at week 6 to 0.52 \pm 0.02 at week 8. Figure 3 shows a representative set of *in vivo* ²³Na spectra from a control rat, an acute CCl₄ treated rat and a chronic CCl₄ treated rat. As compared to the control, the Na_i⁺ signal is higher in the acute CCl₄ treated rat but the Na_e⁺ is higher in chronic CCl₄ treated rat. The results of quantification of all the parameters measured by SR-aided ²³Na and ³¹P experiments are shown in Table 1. In the acute CCl₄ group, the total tissue sodium concentration ([Na_i⁺]) and [Na_e⁺] increased, ATP/P_i decreased but rECS and pH did not change compared to the control group. In the chronic CCl₄ group, rECS and [Na_i⁺] increased, but [Na_e⁺], ATP/P_i and pH did not change significantly compared to the control group. Histological slides of rat livers are shown in Figure 3. Acute CCl₄ treatment induced inflammatory response in centrilobular regions, like fatty deposition, neutrophils infiltration and coagulative necrosis. On the other hand, chronic CCl₄ treatment induced fibrosis shown with abundant collagen bundles.


Discussion

SQ ²³Na MRI SI measures total tissue sodium and TQF MRI measures sodium ions transiently bound to macromolecule, which are mainly from intracellular space in the normal liver [1] but could also be from extracellular space in diseased states, like fibrosis. The results of SR-aided ²³Na MRS and histology experiments show that the large increase in TQF ²³Na MRI in the acute CCl₄ group was due to an increase in [Na_i⁺] caused by compromised cellular energy status and damaged cellular membrane integrity. In contrast the increase in TQF ²³Na MRI in the chronic CCl₄ group was due to overproduction of extra-cellular macromolecules and increased rECS.



Conclusion

SQ and TQF ²³Na MRI are sensitive to cellular and tissue damage caused by acute and chronic CCl₄ exposure. TQF ²³Na MRI may be more useful in detecting the severity and progression of liver damage than SQ ²³Na MRI because TQF signal depends on [Na_i⁺] and accumulation of extra-cellular macromolecules, which are major patho physiological changes in many liver diseases [2].

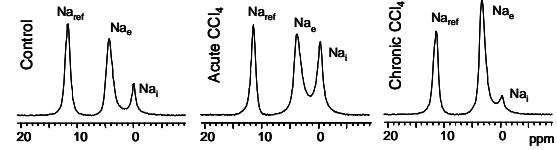

References: [1] Seshan *et al.* MRM 38:821 -27 (1997) [2] Weber *et al.* Crit Rev Toxicol. 33:105-36 (2003)

Figure 1. Representative slices from a 3D SQ (a, b) and TQF (c, d) ²³Na MRI of rat liver before CCl₄ treatment (a, c) and 24 hours after CCl₄ treatment (b, d).

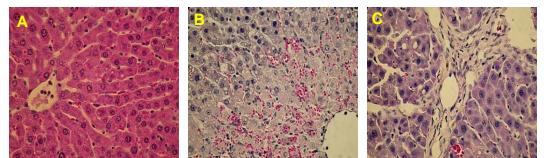

Figure 2. SQ and TQF ²³Na SIs of rat livers over 8-week CCl₄ treatment (p <0.05, * - vs. control, # - vs. previous time point)

Figure 3. ²³Na Spectra from reference bulb and liver of control, acute CCl₄ treated rat, and chronic CCl₄ treated rat

Table 1. Parameters measured by *in vivo* SR-aided ²³Na and ³¹P MRS in acute and chronic CCl₄ intoxication experiment (* - p <0.05, vs. Control)

	Acute CCl ₄ experiment		Chronic CCl ₄ experiment	
	Control	CCl ₄	Control	CCl ₄
rECS	0.24 \pm 0.02	0.26 \pm 0.01	0.19 \pm 0.03	0.28 \pm 0.03 *
[Na _i ⁺], mM	32 \pm 2	46 \pm 4 *	35 \pm 4	52 \pm 7 *
[Na _e ⁺], mM	17 \pm 2	49 \pm 7 *	18 \pm 2	18 \pm 2
ATP/P _i	1.24 \pm 0.08	0.94 \pm 0.10 *	1.24 \pm 0.12	1.35 \pm 0.07
pH	7.33 \pm 0.02	7.29 \pm 0.01	7.36 \pm 0.04	7.29 \pm 0.03

Figure 4. Histological examination of rat liver slices by H&E staining in 400 \times magnification (A) normal control (B) acute CCl₄ induced liver injury, (C) chronic CCl₄ induced liver injury