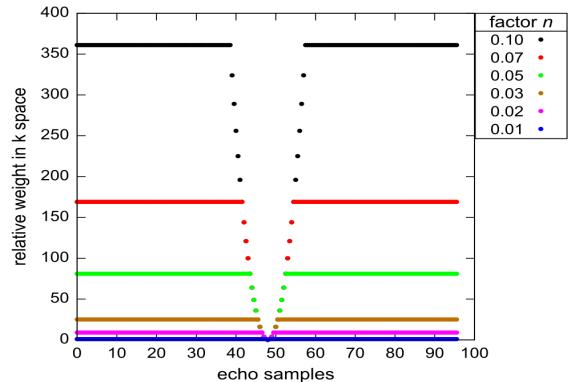


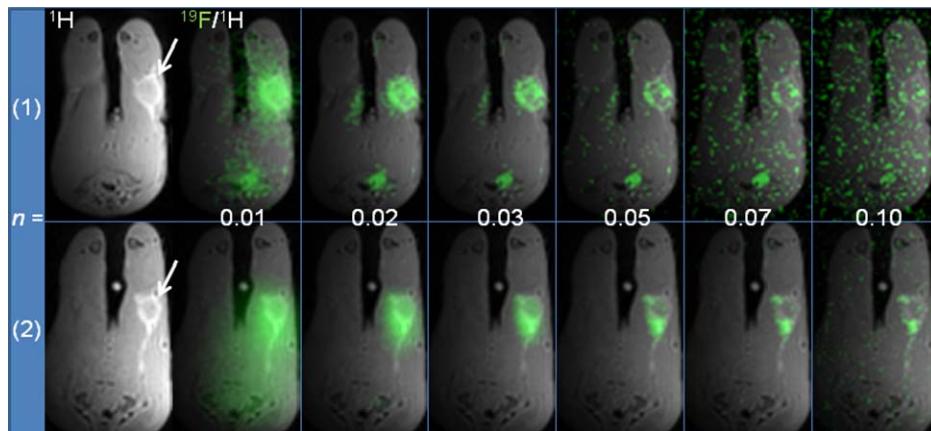
Dual Resolution Simultaneous $^{19}\text{F}/^1\text{H}$ In Vivo Imaging of Targeted Nanoparticles

J. Rahmer¹, J. Keupp¹, S. D. Caruthers^{2,3}, O. Lips¹, T. A. Williams³, S. A. Wickline³, and G. M. Lanza³

¹Philips Research Europe, Hamburg, Germany, ²Philips Healthcare, Andover, MA, United States, ³Washington University, St. Louis, MO, United States


Introduction

^{19}F -labeled diagnostic or therapeutic agents [1], like targeted perfluorocarbon nanoparticles, offer a high potential for quantified molecular MRI [2] with excellent specificity. For anatomical co-registration of the fluorine signal, a proton image of the morphology is needed, because there is no ^{19}F signal from biological tissue and only exogenous contrast agents are visible. Simultaneous $^{19}\text{F}/^1\text{H}$ imaging was shown [3] to be an ideal approach to time-efficient recording of molecular information and morphology, including the possibility of motion tracking and correction [4]. An unmet need of truly simultaneous imaging approaches so far is to satisfy the substantially different requirements on sensitivity and resolution between the ^{19}F and ^1H acquisition, while being constrained to a single choice of spatial encoding gradient strengths. This work presents *in vivo* results of angiogenesis-targeted imaging of Vx-2 tumors in rabbits, demonstrating that 3D radial simultaneous acquisition offers an SNR-efficient way to acquire ^{19}F and ^1H images at different resolutions at the same time. The basic principle is to modify the weight applied to samples in the gridding reconstruction, such that in the ^{19}F image, the balance between SNR and resolution can be optimized *a posteriori* according to the different signal levels found for ^{19}F and ^1H in *in vivo* targeted imaging experiments.


Methods

The study was performed on a 3.0 T clinical whole-body scanner (Achieva, Philips Healthcare, The Netherlands) using a dual-tuned transmit/receive surface RF coil (7x12 cm) and a dual $^{19}\text{F}/^1\text{H}$ spectrometer system [3]. A 3D radial gradient-echo sequence with concurrent dual-frequency RF and acquisition [5] for ^{19}F and ^1H was used with a 3D isotropic k -space trajectory [6]. Imaging parameters were: FOV 140 mm, matrix 96³, ^1H -resolution 1.46 mm³, $\alpha_{^{19}\text{F}}/\alpha_{^1\text{H}} = 40^\circ/10^\circ$, pixel bandwidth 400 Hz, TR/TE = 6.8/2.4 ms, 230400 radial readouts, scanning time 26 min. For the ^{19}F image reconstruction, the radius of a sphere in k -space is determined, in which sampling is dense enough to satisfy the Nyquist criterion. For k values inside this sphere, standard k^2 weighting of samples is applied [7], whereas outside, uniform weighting is applied. A factor n was introduced to modify the radius of the sphere, thereby changing the range of k^2 weighting, as shown in Fig. 1.

Male New Zealand White rabbits (~2 kg) were implanted in one of their hind legs with Vx-2 adenocarcinomas (National Cancer Institute, MD), which grew to about 15 mm within 2 weeks. Imaging was performed 3h post-injection of 1.0 ml/kg of α_{β_3} -targeted paramagnetic NP (15-5 perfluorocrownether, 20 vol%, Gd-DTPA bis-oleate labeled). All animal care and protocols were in accordance with institutional guidelines.

Figure 1: Relative weight applied to samples of a 3D radial echo readout in k -space. Smaller factors n reduce the range of k^2 weighting and thus suppress higher k values.

Figure 2: 3D radial dual-resolution $^{19}\text{F}/^1\text{H}$ imaging with reconstruction at different resolutions for the fluorine image (k -space weighting factor $n=0.01\ldots0.10$). The selected slices show the signal of angiogenesis-targeted perfluorocrownether nanoparticles (^{19}F : overlay in green) in Vx-2 tumor-bearing rabbits (hind leg). An appropriate resolution can be chosen *a posteriori* for a given *in vivo* ^{19}F signal level.

Conclusion

Variable k -space weighting in the reconstruction of simultaneously acquired $^{19}\text{F}/^1\text{H}$ 3D radial data allows optimizing the balance between SNR and resolution in the ^{19}F image retrospectively, while maintaining high resolution for the ^1H image for anatomical co-registration. An *a posteriori* approach for the choice of ^{19}F image resolution is powerful, because the degree of angiogenesis and corresponding signal levels are unknown before the diagnostic measurement.

References

1. Yu JX *et al.*, Curr. Medicinal Chemistry 12:819-848 (2005)
2. Lanza GM *et al.*, Curr. Topics in Dev. Biology 70:57-76 (2005)
3. Keupp J *et al.*, Proc. ISMRM 14: 102 (2006)
4. Keupp J *et al.*, Proc. ISMRM 16: 17 (2008)
5. Rahmer J *et al.*, Proc. ISMRM 16: 1471 (2008)
6. Wong S *et al.*, Magn. Reson. Med. 32: 778-84 (1994)
7. Glover G *et al.*, J. Magn. Reson. Imag. 2: 47-52 (1992)