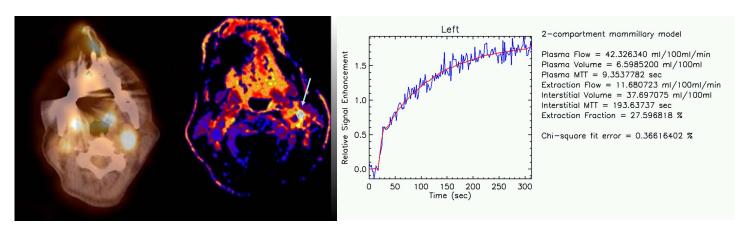
## Quantification of arterial wall inflammation in patients with arteriits using high resolution DCE-MRI: A Correlation Study with 18F-FDG PET-CT


C. C. Cyran<sup>1</sup>, T. Saam<sup>1</sup>, S. Soubron<sup>1</sup>, J. G. Raya<sup>1</sup>, K. Bochmann<sup>1</sup>, M. Hacker<sup>2</sup>, A. Rominger<sup>2</sup>, P. Bartenstein<sup>2</sup>, T. Pfefferkorn<sup>3</sup>, M. Dichgans<sup>3</sup>, M. F. Reiser<sup>1</sup>, and K. Nikolaou<sup>1</sup>

**Purpose:** To compare 18F-FDG-PET-CT, which is used clinically to detect inflamed arteries and to monitor anti-inflammatory treatment in patients with arteriitis, to high resolution dynamic contrast-enhanced MRI (DCE-MRI) in its ability to measure and quantify inflammation in carotid and vertebral arteries (1). Results of DCE-MRI were correlated with the gold standard 18F-FDG-PET-CT.

**Methods and Material:** DCE-MRI of the carotid/vertebral arteries of 12 patients with suspected arteriitis was acquired at 3T (2D-SR-SGRE) using a dedicated 4-channel surface neck coil. Patients underwent 18F-FDG-PET-CT within one week of the MRI scan. The maximum standardized uptake value (SUV) was measured on PET-CT images at the identical location as the ROIs were set on the MR images. Time curves were fitted to a two-compartment kinetic model (2) for the MR images to generate values, among others, for the following parameters: plasma flow (PF), plasma mean transit time (PMTT) and extraction flow (EF) across the capillary wall,

**Results:** 6 out of 12 patients were diagnosed with arteriitis. SUV was significantly higher in patients with than in patients without arteriitis (1,9 vs. 1,2; p<0.001). SUV correlated positively with EF (r=0.71; p<0.001) and PMTT (r=0.6; p<0.001) and correlated negatively with PF (r=-0.49; p<0.002). Patients with arteriitis as diagnosed by PET-CT had significantly larger EF compared to patients without arteriitis (p<0.05).

**Conclusion:** DCE-MRI is applicable to non-invasively measure and quantify arterial inflammation with good correlation to 18F-FDG-PET-CT. This method might be useful in the diagnosis of arteriitis and in monitoring anti-inflammatory therapy.



**Figure 1:**Images of a 46 year old female patient with Takayasu Arteriitis. Images on the left show the PET-CT images with a substantial FDG-uptake in both carotid arteries. The image in the middle show the DCE images and the output file with the quantitative MR parameters

## References

- (1) Kerwin WS et al. Radiology. 2006 Nov;241(2):459-68.
- (2) Brix et all. MRM 2004, 52: 420-429.

<sup>&</sup>lt;sup>1</sup>Department of Clinical Radiology, University Hospitals Munich - Grosshadern, Munich, Germany, <sup>2</sup>Department of Nuclear Medicine, University Hospitals Munich - Grosshadern, Munich, Germany, <sup>3</sup>Department of Neurology, University Hospitals Munich - Grosshadern, Munich, Germany