
 
Figure 2: T1 image of gelatin 

phantom with bright white spot 
the incident proton beam. 
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Introduction 
The purpose of this study is to assess the clinical feasibility and effectiveness of magnetic resonance imaging (MRI) for quality assurance in proton 
beam therapy. The hypothesis is that as MRI relies on the relaxation times of protons within the patient and proton beam therapy delivers protons to 
the tumor volume, the extra protons delivered to the cancer tumor volume will produce an additional magnetic signal that can be observed by MRI. 
The principal advantage of proton radiation over other widespread radiation techniques in cancer therapy is the finite range of protons in the patient, 
known as the Bragg peak. But in most patients the precise position to stop the proton beam is not exactly known because of organ motion (lung 
cancer), patient setup error or/and bone structures in the beam (skull in brain cancer). Proton range uncertainties or/and motion variations can be on 
the order of several centimeters, significantly reducing the benefit of proton therapy because of the excessive amount of radiation given to health 
tissues surrounding the cancer tumor. In addition, because protons are completely stopped in the patient, no conventional monitoring methods like 
electronic portal imaging can be applied. Therefore, MRI is assessed as a tool to give functional information of proton beam therapy of cancerous 
tumor volume. 
 
Materials and Methods 
Being that magnetic field changes are produced in the lattice within the tumor or surrounding tissue by the therapeutic proton irradiation, dedicated 

MR pulse sequences were used to produce an images of the location of these extra protons and 
their electromagnetic disturbance. A 1.5 Tesla MRI machine was used in the present study. 
Several gel and animal tissue phantoms were made to assess the feasibility of the MRI to 
quantitatively and qualitatively capture the additional therapeutic protons. In figure 1, we show 
the experimental setup of the treatment. The protons have a finite range in the gel/tissue, where 
the majority of the protons accumulate at the end of the range (represented in the figure by the 
RED arrow). The gel phantoms were composed of either gelatin (high content of water) or 
mayonnaise (high content of fatty compounds). The tissue phantom was composed of bovine 
tissue with muscle and fat. The proton beams used had a range of approximately 16 cm in water 
(corresponds approximately to 160 MeV kinetic energy) and modulation of 6 cm. A total dose 

of 500 cGray was delivered to each phantom, which took a total of 5 minutes. Each phantom was imaged with dedicated T1, T2 and T2* weighted 
MR sequences 5-10 minutes post-proton irradiation. 
 
 
Results  
Preliminary results obtained with gelatin and mayonnaise phantoms are presented in figures 2&3. In figure 2 a T1 (3D VIBE) image (TE=2.45ms and 
TR=5.27ms) of the gelatin produced a bright oval region representing the end of range of the proton 

treatment. The signal is generated by the extra protons 
associated with the proton irradiation beam. The gelatin 
phantom is very homogeneous and therefore is possible to 
predict the range of the protons within the phantom. In the 
present study the range observed was of the order of 5 cm. 
 
In figure 3, a T2* (GRE) image (TE=48ms and TR=2200ms) 
is produced for the mayonnaise phantom where the large 
bright area in the phantom represents the broad proton beam 
irradiating the phantom. However, since the mayonnaise 
phantom was not very homogeneous the protons within the 
phantom were unable to produce a flat end of range 
(represented by the yellow line). Some variations exist 
around the end of range due to air pockets within the 
mayonnaise phantom that affect the motion of the protons in 
the phantom. 

 
Discussion 
Currently for this abstract we have restricted to qualitative evaluation of the end of range treatment, though all sequences used for this experiment 
produce quantitative maps for T1, T2 and T2* values. We are in the process of evaluating the quantitative images for the effect the protons have on 
specific tissue types in the area of irradiation. This could potentially answer the therapeutic aspects of the treatment also.  
 
Conclusion 
We have demonstrated the MRI imaging can be used in proton radiation therapy to measure the end of range of a treatment. This observation has 
profound implications to proton radiotherapy quality assurance since it will allow in-vivo verification of proton therapy. 
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Figure 1: Incident protons on phantom 

 
Figure 3: T2* image of mayonnaise 
phantom with bright white region the 

incident proton beam. 
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