
 
 

Figure 1: (a) and (c): Multipolar PatLoc-encoding fields. (b) Achie-
vable resolution. The pigmented pixels are examples of pixel groups. 
 

 
 

Figure 2: Real parts of PSF weighted with intensity correction show-
ing the ringing artifact. (a)  DFT of signal ( αη ). (b) PSF in 
frequency space.after reconstruction (c) Corresponding PSF in image 
space. Contributing pixels lie on contour lines of the encoding fields 
(cp. Fig. 1b). The images are overscaled to visualize the artifacts.    
 

 
 

Figure 3: Illustration of the aliasing artifact. (a) and (b): Image space 
representation; (c) and (d): Frequency space representation. Images 
(b) and (d) result upon undersampling by factor two. The white areas 
show the chosen FOVs. The encoding fields define shape and size of 
the FOVs in image space. The non-unique mapping to image space 
leads to a 4-fold appearance of the aliasing artifact in image space. 
 

 
Figure 4: PatLoc reconstructon in combination with two-fold under-
sampling. (a) DFT of individual coil data. Only four of eight datasets 
are shown. Aliased pixels are unfolded by reconstruction resulting in 
(b): Spin density in frequency space. Four realizations of this space 
exist: the first index indicates realizations induced by the inverse 
mapping of the encoding fields, the second index indicates the space 
separation due to undersampling. (c) Respective spin densities in 
image space. (d) Final image. 
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Introduction: MRI is characterized by discrete and finite sampling patterns. In Fourier imaging 
this leads to the well-known truncation artifacts including ringing and also aliasing, if the signal is 
undersampled. In PatLoc imaging [1] the linear gradient fields are replaced by nonlinear and 
non-bijective encoding fields. In this case no trivial mapping from frequency space to image 
space exists. Non-bijective encoding leads to ambiguities, which can be resolved by a suitable 
parallel imaging reconstruction method. For Cartesian sampling the reconstruction can be 
performed as described in [2]. However, it is not obvious, how the truncation artifacts appear in 
PatLoc-reconstructed images. We focus here on quadratic multipolar encoding fields as shown 
in Fig. 1a,c. These fields cause very good resolution at the periphery of the imaged region, so it 
is e.g. in particular well suited for cortical imaging. Note that the framework developed in this 
work is applicable to all sorts of encoding fields. 
 

Basic PatLoc Theory: Consider a parallel imaging setup, in which the PatLoc coils are used 
instead of the gradients. The signals may be acquired on a regular grid. The signal sα of receiver 
coil α with sensitivity profile cα at k-space location k

r

is then given by: 
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induces a transformation from image space to frequency space. In 2D-imaging this 
mapping is defined by two encoding fields (e.g. Fig. 1a,c): ( )1 2( ) ( ) B ( ) .
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The factor id is 
a volumetric correction, which comes along with the transformation. The index i indicates 
that αη is given by the sum of all identically encoded spins (see e.g. pixel groups in Fig. 1b).  
Methods: The theoretical considerations are substantiated by simulations performed in MAT-
LAB (The Mathworks, USA). Sensitivity maps were acquired in a phantom measurement using 
linear gradient fields. A phase-modulated Shepp-Logan head phantom was used to represent 
the spin density. Undersampling has been simulated by deleting every second k-space line.  
Results and Discussion: Eq. 1 shows that sα and αη form a Fourier transform pair. This means 
that αη behaves like an image does in Fourier imaging: Discrete and finite sampling leads to the 
usual ringing (Fig. 2a) and aliasing (Fig. 3d) artifacts as long as αη is displayed in frequency 
space. Eq. 1 shows that the magnetization ( )iρ ωr can be found correctly by solving a matrix 
equation. This is true in the discretized case, if the sensitivity profiles and the correction 
factor id are smooth in frequency space. Then ( )iρ ωr basically shows the same ringing (Fig. 2b) 
and aliasing artifacts as ( )αη ωr .The actual image is found by a variable transformation from 
frequency space to image space: ( ) ( )ixρ ρ ω= rr

% evaluated at 1( ).ix ω ω−= rr

The transformation 
induces non-symmetric distortions in the point spread function (PSF) and it leads to differences 
in the distances of aliased pixels. 
 

The comparison of Fig. 2c with Fig. 1b demonstrates that the ringing mainly affects neighbouring 
pixels, which lie on contour lines of the encoding fields in image space. The shape of these lines 
only depends on the applied encoding fields, and so the ringing remains interpretable in PatLoc 
imaging. It should however be noted that the ringing becomes more pronounced and therefore 
delocalizes in regions, where the encoding fields become flat as signal accumulates in narrow 
frequency bands. As imaging is not possible in such flat regions anyway, the unwanted artifacts 
can be suppressed, e.g. by filtering or by adding a linear gradient for intra-voxel dephasing. 
 

Fig. 3b,d depict the aliasing artifacts, if the signal is undersampled. The Nyquist theorem shows 
that for Cartesian sampling the 2D-FOV is a rectangle in frequency space. In image space a 
rectangle has a different shape (� Fig. 3a,b). As long as the object lies within this shape, no 
aliasing occurs. If the Nyquist-boundary is chosen to be narrower in frequency space, aliasing 
occurs (� Fig. 3b,d).     
The aliasing can be undone by combining PatLoc reconstruction with SENSE reconstruction [3]. 
Both reconstruction methods rely on the fact that spins at different, but known positions are 
identically encoded by the encoding functions, but differently weighted by the sensitivity profiles 
of the receiver coils. Undersampling with reduction factor R and with an intrinsic PatLoc 
acceleration of S leads to R*S identically encoded spins. Once the corresponding positions are 
found, an adequate matrix inversion leads to the desired recovery of the original spin density, if 
the number of coils exceeds R*S and as long as the g-factor penalty is not severe. An example 
for R = 2 (and S = 2 for the quadratic multipolar encoding fields) is shown in Fig. 4, which should 
be seen in conjunction with Fig. 3.   
Though the truncation artifacts might appear differently in PatLoc imaging, they can be interpre-
ted easily by differing clearly between image space and frequency space. Understanding the 
truncation artifacts in PatLoc imaging is important for correct identification of artifacts in images. 
It also helps to solve a lot of interesting application problems. One application has been shown 
in this work: The combination of PatLoc reconstruction with SENSE reconstruction.  
Acknowledgements: This work is part of the INUMAC project supported by the German 
Federal Ministry of Education and Research, grant #13N9208.  
References: [1] Hennig et al., MAGMA 21(1-2):5 – 14 (2008); [2] Schultz et al., Proc. ISMRM, 
#786, Toronto (2008); [3] Pruessmann et al., MRM 42, 952 – 962 (1999). 

k
r

( )

( )

( ) ( ) ( ) ( )   with  ( ) ( ) ( ) ( )      (1)ik x ik
i i i

iV V

s k c x x e dx e d c dα α ω α ω α α

ω

ρ η ω ω η ω ω ρ ω ω= = =∑∫ ∫
r r

r rr
r

r r r r r rr r r

Proc. Intl. Soc. Mag. Reson. Med. 17 (2009) 564


