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PURPOSE  
Quantitative mapping of susceptibility in MRI has a wide range of biomedical applications, including molecular/cellular imaging, contrast-agent studies, fMRI BOLD 
quantification, and the assessment of iron overloading such as in neurodegenerative and brain vascular diseases. Susceptibility quantification using MRI has been 
sought after for a long time with various approaches (1-3).However, it is only recently that the feasibility of quantitatively mapping susceptibility has been 
experimentally demonstrated using the magnetic source MRI approach. This method inverts the local magnetic field (as measured from the MR signal phase) to the 
magnetic dipole source or susceptibility (4-8). This inversion from field to source is a challenging ill-posed problem (4) and adapting the data acquisition and/or 
regularizing the inversion is required to generate a reasonable solution (4-8). The regularization without the constricting acquisition is practically preferred, but previous 
approaches showed an important dependence on the regularization function. Here, a solution that makes use of the magnitude image gradient information is shown to be 
more accurate. 
THEORY  
The forward problem from susceptibility source to magnetic field is given by B = C⊗ χ, where B is the local field (along B0), C is the dipole convolution kernel 
[3 cos2(θ) – 1]/4π|r|3 in image space or 1/3 – kz

2/k2 in Fourier space (2,3), and χ is the susceptibility distribution. Here, the inverse problem for this convolution 
considers the background field induced by sources outside the FOV or resulting from shimming limitations by modeling it with a polynomial Sε. The formulation also 
takes into account the non-uniform noise of the MR signal phase.  The resulting inverse problem with regularization can be written as: 

minχ,ε ||W ( Cχ + Sε – B/B0 ) ||22 + α || Mχ  ||2
2 + β || WgGχ ||2

2 
The first term is the squared distance between the measured field and the fitted one Cχ + Sε. It is weighted by W (W2 is the inverse of the phase noise correlation 
matrix), which is diagonal and proportional to the MR signal magnitude. The second and third terms are regularization terms on the susceptibility and its gradient, 
respectively. M is a mask defining a region at the domain boundaries (water/ background tissue) to force a reference region. Wg is the modulus of the inverse of the 
gradient of the MR signal intensity, which is used to impose edge information. This weighting results in a smoothing of the solution within regions with uniform MR 
signal intensity while allowing sharp transitions where magnitude varies. A conjugate gradient algorithm was used to perform the regularized inversion. 
MATERIAL AND METHODS  
Experiments were performed at 1.5T (GE Healthcare, Waukesha, WI) using a 3D gradient echo sequence. In vitro, imaging was performed on a 12.5 cm diameter 
cylindrical phantom filled with water and balloons containing a range of gadolinium solutions that produce separate susceptibility regions ranging from 0 to 5 ppm with 
respect to water. Scanning parameters were : FOV = 128 mm, imaging matrix  643 isotropic resolution,  bandwidth per pixel BW=1 kHz, TR=30 ms, TE=1.2, 2.2, 3.2, 
4.2 and 5.2 ms,  flip angle of 30°, and the body coil for signal reception. Field maps were calculated from the dephasing between echoes (4). The inversion procedure 
was performed on the phantom over a range of regularization parameters α and β, with shim orders ranging from 0 to 4, and with and without the gradient weighting 
matrix to assess the influence of each parameter and to identify optimized inversion parameters. 
Patients suffering from cerebral cavernous malformation with hemorrhages underwent Susceptibility Weighted Imaging from which data were retrospectively 
processed. Axial slices were acquired with FOV=24 cm, slice thickness 2 mm, matrix=512x384x32 (partial ky=75%), BW=122 Hz, TR/TE=50/40 ms, flip angle=20° 
with an 8-channel surface coil. Raw reconstructed phase maps were unwrapped using region-growing and a susceptibility reconstruction using the parameters identified 
above, was performed on a limited region within the brain presenting important phase defects. 
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DICUSSION AND CONCLUSION  
Obtaining quantitative susceptibility maps from MR phase images with a single acquisition (6) requires the use of prior information or constraints. Boundary values 
need to be imposed for efficient convergence. This is done by defining the background at the domain boundaries. Using a gradient regularization stabilizes further the 
inversion and combined with edge priors available from the intensity image, it improves the quantification of susceptibility and image quality. This technique can be 
applied in vivo to quantify iron in hemorrhage which may be used for staging. It may also be applied to other diseases or situations that affect susceptibility such as 
calcifications and contrast agents.  
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Fig.2 Phantom intensity (a) and phase (b) as well as reconstructed susceptibility map (c, 
weighted gradient method with α =1000, β =1000, shim order=0). d: susceptibility slope 
with standard and weighted gradient regularizations for a range of regularization parameters 
showing that the weighted gradient term provides good quantification for all tested β.  

With α = 0, convergence is not obtained in 
3000 iterations (IT, ~1s per IT). Increasing
α (Fig.1) allows converging in ~1000 IT 
but leads to limited image quality in the 
susceptibility map. Using a standard 
gradient-based regularization with β = 100, 
a solution is reached in ~100 IT but suffers 
from excessive smoothing and attenuation
(Fig.2-d). The weighted gradient technique 
converges in ~1000 IT and provides an 
optimal susceptibility map both 
qualitatively and quantitatively, regardless 
on the value of β in the tested range 
(slope=0.97, Fig.2d). The result in Fig.2c 
shows complete removal of the streaking 
artifact, much better edges definition and 
limited attenuation of susceptibility values. 
In the brain data (Fig.3) a strong 
paramagnetic region with susceptibilities 
close to 1.2 ppm relative to tissue indicates 
a concentration of Fe3+ of 6.8 mM, 
consistent with Hb in blood, assuming a 
molar susceptibility of 177 ppm/M. 

Fig.1 Top row from left to right: results for 
different α (β = 0, shim order=0).  Middle 
and bottom row for α=1000 and shim 
order=0: standard gradient regularization 
only smoothes the solution as β increases 
(middle row) while the weighted-gradient 
solution preserves the edges (bottom row). 
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Fig.3 Brain intensity (a) and phase (b) on a hemorrhage. Zoom on the signal void (c) and 
unwrapped phase map (d). e: reconstructed susceptibility map. 
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