

Effects of Ischemia-Reperfusion Injury on ^{23}Na Relaxation Times and its Implications on Quantification of Corticomedullary Sodium Concentration by ^{23}Na MRI

B. Atthe¹, A. Babsky¹, and N. Bansal¹

¹Radiology, Indiana University School of Medicine, Indianapolis, Indiana, United States

INTRODUCTION

The maintenance of the corticomedullary sodium gradient, an indicator of normal tubular function in the kidney, is presumably lost early in the course of acute tubular necrosis (ATN) [1]. Ischemia remains the major cause of ATN in the adult population. ^{23}Na MRI has been applied to study the alterations in renal sodium distribution in the rat kidney during ischemia-reperfusion (IR) injury [2]. The observed changes in ^{23}Na MRI signal intensity (SI) of the renal medulla and cortex during ischemia and reperfusion can be caused by a) a change in sodium concentration, and/or b) changes in ^{23}Na relaxation times. In this study, ^{23}Na MRI and MRS are applied to evaluate the effects of renal ischemia and reperfusion on ^{23}Na relaxation times in renal medulla and cortex, and the changes in $[\text{Na}^+]$ due to IR injury are quantified by applying T_1 and T_2 corrections.

METHODS

^{23}Na MRI: All ^{23}Na MR experiments were performed on a Varian 9.4-Tesla, 31-cm horizontal bore system equipped with a 12-cm gradient insert. Effect of ischemia and reperfusion on ^{23}Na MRI SI was investigated in Wistar rats ($n=5$) using a home-built 50 mm diameter loop-gap resonator tuned to 105.9 MHz. A 10 mm diameter tube containing 50 mM NaCl was positioned next to the rat and used as a signal intensity reference. A 3D ^{23}Na gradient-echo (GE) imaging sequence with the following parameters was used: 50 ms repetition time (TR), 4.5 ms echo-time (TE), $64 \times 64 \times 16$ data matrix over a field of view of $6 \times 6 \times 6$ cm. Weighted signal summation (WSS) was used to improve SNR. On average, 9.67 transients were collected per phase-encoding step. ^{23}Na images were collected every 10 minute during baseline, 50 min ischemia and 50 min reperfusion periods. In-magnet ischemia was induced by a snare taut placed around the vascular pedicle of the left kidney. High-resolution ^1H images were collected for anatomical delineation of kidney regions using a 2D multi-slice spin-echo (SE) sequence and following parameters: 2000 ms TR, 30 ms TE, $256 \times 256 \times 16$ data matrix over a $60 \times 60 \times 60$ mm FOV.

T_1 and T_2 Measurements using MRS: ^{23}Na fast and slow T_2 (T_{2f} and T_{2s} , respectively) and T_1 of the whole kidney were measured by MRS on separate cohort of rats ($n=4$) using a 10-mm-diameter surface coil directly placed on exposed kidney. ^{23}Na T_1 was measured using a pulse-burst saturation recovery pulse sequence consisting of 10 saturation pulses followed by an incremental delay (16 values ranging from 0.05 to 200 milliseconds), a 90° observed pulse and acquisition with Cyclops phase cycling. ^{23}Na T_{2f} and T_{2s} were measured using a Hahn SE sequence consisting of a composite 180° pulse. The TE was varied from 0.06 to 40 milliseconds. The instrument dead time of 10 microseconds was included as a part of the TE. A pair of T_1 and T_2 data was collected every 15–16 min during normal perfusion, 50 min ischemia and 50 min reperfusion. The relaxation times were computed by fitting a plot ^{23}Na resonance area versus TR or TE to a mono-exponential function for T_1 and a bi-exponential function for T_2 .

T_1 and T_2^* Measurements using MRI: T_1 and T_2^* of renal cortex and medulla were measured by ^{23}Na MRI on two additional cohort of rats ($n=3$ each) using the 50 mm diameter loop-gap resonator. A 3D GE imaging sequence with similar imaging parameters as described above was used. For T_1 measurements, the image matrix size was reduced to $64 \times 32 \times 8$ and five ^{23}Na images were collected with a 4.5 ms TE and 10, 20, 50, 80 and 120 ms TR. T_1 measurements were repeated every ~16 min during normal perfusion, 50 min ischemia and 50 min reperfusion. T_1 of the medulla and cortex was computed by least square fitting the SI of the regions of interest (ROI) to a mono-exponential function. For T_2^* measurements, the image matrix size was reduced to $64 \times 32 \times 8$, the readout gradient was increased by a factor 10 to allow shorter TE and ten ^{23}Na images were collected with a 50 ms TR and 1.5, 2.2, 3.5, 4.5, 6, 8, 11, 15, 19 and 25 ms TE. T_2^* measurements were repeated every ~25 min during normal perfusion, 50 min ischemia and 50 min reperfusion. Least squares curve fitting of the T_2^* image data to a bi-exponential function did not give a reproducible value for T_{2f}^* because the T_{2f} in tissue is very short. Thus T_{2f} and the relative fractions of the fast and slow components for the whole kidney from the spectroscopy experiments were used to calculate T_{2s}^* of the cortex and medulla by bi-exponential curve fitting of SI.

RESULTS

Fig 1A shows a transaxial slice from a ^1H MRI and a zoomed left kidney image with ROI's for medulla and cortex. A transaxial slice from a 3-D ^{23}Na MRI corresponding to ^1H MRI is represented in (A). Fig 1B shows zoomed ^{23}Na MR images of a kidney collected during baseline, after 50 min of ischemia and after 50 min of reperfusion. After 50 min of ischemia the average ^{23}Na SI relative to the reference decreased from 1.57 ± 0.03 to 1.09 ± 0.03 in the medulla and from 0.92 ± 0.06 to 0.74 ± 0.04 in the cortex. The corticomedullary sodium SI ratio decreased from 1.59 ± 0.02 to 1.23 ± 0.06 after 50 min of ischemia; on 50 min of reperfusion the ratio continued to decrease and plateaued at 1.213 ± 0.05 . Results of both MRS and MRI experiments showed that the T_1 of renal medulla (36 ± 3 ms) and cortex (38 ± 1 ms) are similar in normal kidney. After 50 min of ischemia the T_1 of medulla (29 ± 3 ms) and cortex (30 ± 3 ms) decreased to similar values. The T_1 of both the kidney compartments recovered slightly after 50 min of reperfusion. ^{23}Na T_2 measurements by MRS showed that T_{2s} and T_{2f} of normal kidney are 28.4 ± 0.6 and 3.2 ± 0.1 ms, respectively. Both T_{2s} and T_{2f} of the whole kidney decreased to 22 ± 2 and 1.9 ± 0.1 ms, respectively, after 50 min of ischemia. Both the relaxation times recovered slightly after 50 min of reperfusion. The relative contribution of the fast and slow relaxation components was 25:75 (fast: slow) before ischemia, 33:67 after ischemia and 34:66 after reperfusion. This ratio is approximately reversed compared to the theoretically expected 60:40 ratio for a bi-exponentially relaxing sodium in a homogeneous sample. Regional ^{23}Na T_2^* measurements by MRI showed that T_{2s}^* of cortex and medulla are 19 ± 1 and 18 ± 1 ms, respectively. These relaxation times are shorter than the T_2 of the whole kidney measured by MRS because of B_0 inhomogeneity effects. The T_{2s}^* of both medulla and cortex decreased to 13 ± 1 ms after 50 min of ischemia and recovered to 15 ± 1 ms after 50 min of reperfusion. The changes in T_1 and T_2^* with ischemia and reperfusion caused ~15% decrease in ^{23}Na MRI SI during ischemia and reperfusion. The effect of ischemia and reperfusion on medulla and cortex $[\text{Na}^+]$ was calculated using the ^{23}Na SI of the tissue relative to the 50 mM reference and the sodium relaxation time. Ischemia for 50 min decreased the TSC by ~18% and ~16% in medulla and cortex respectively. TSC in medulla did not recover after 50 min of reperfusion but the cortex TSC was recovered.

CONCLUSION

Renal ^{23}Na MRI revealed a marked decrease in medulla and cortex ^{23}Na MRI SI during the early evolution of ATN caused by ischemia-reperfusion injury. ^{23}Na relaxation time measurements by MRI and MRS showed that sodium relaxation characteristics are similar in renal medulla and cortex in normal kidney. Ischemia causes a significant decrease in the relaxation times which affects the calculation of medulla and cortex $[\text{Na}^+]$ from MRI SI data. However, the changes in relaxation times for the medulla and cortex are identical, thus the medulla to cortex ^{23}Na SI ratio represents $[\text{Na}^+]$ ratio in the two compartments during ischemia and reperfusion.

REFERENCES

1. Maril N, Margalit R, Rosen S, Heyman SN, Degani H. *Kidney International*. 69:765-8, 2006.
2. Bharath A, Babsky A, and Bansal N. ISMRM: 457, 2008

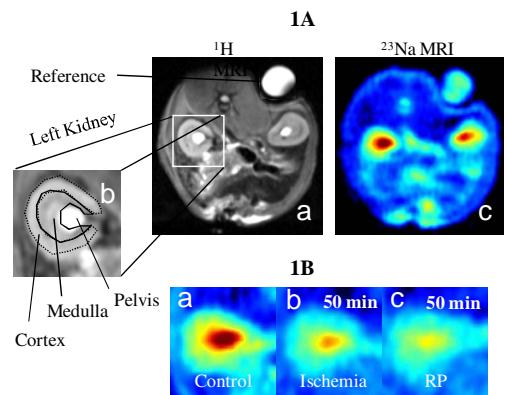


Fig. 1A. ^1H and ^{23}Na Magnetic resonance imaging (MRI) of the rat kidney. (a, b) A transaxial projection of a ^1H MRI and zoomed left kidney image with applied ROI's of medulla, cortex and pelvis (c) A transaxial projection of a 3-D ^{23}Na MRI corresponding to ^1H MRI represented in (a). Fig. 1B. Zoomed ^{23}Na MR images of a kidney collected during (a) baseline, (b) after 50 min of ischemia and (c) after 50 min of reperfusion.