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INTRODUCTION:  Compressed Sensing (CS) ([1], [2], [3], [4]) is a recently created algorithm which allows reconstructing a signal from a small portion of its Fourier 
coefficients if that signal is sparse in a suitable basis. It was first used by Lustig et al. [5] in MRI, and it has become a popular alternative for speeding up the MRI 
acquisition processes. In practice, CS has been implemented as an l1-norm minimization or a minimization of continuous approximations of an l0-norm [6], [7]. The 
correct convergence of those minimization approaches is guaranteed only when the number of acquired samples in the Fourier domain is bigger than a certain quantity 
that depends on the size of the support of the original signal (the number of non-zero coefficients in the sparse domain of the signal). This constitutes a major problem 
as the support of the signal is not known, and therefore, there is no information to judge whether the reconstructed signal is correct or not. In this article we present a 
mathematical index that can discriminate correct from erroneous CS reconstructions (without knowing the original signal), and therefore identify the presence of 
reconstruction artifacts. 

METHODS:  Following the approach presented in [6] and [7] we solved a CS problem by 
minimizing iteratively continuous approximations of the l0-norm. We approximated it with 
���|�|� � 1 �  1 �|�| 
⁄ � 1�⁄  and we used a different fixed-point minimization as that suggested 
in [6]. We undersampled the data in the phase-encoding direction (rows) and we reconstructed 
column by column. We call 
 a column to be reconstructed in the image domain and � the number 
of acquired samples from a total of � Fourier coefficients. Let � be the vector with  � � � 
unknown Fourier coefficients and � the minimum l2-norm approximation of 
 for the given Fourier 
coefficients. We define ���� = v + Pc as the approximation to 
, where � is the � � �� � �� 
matrix whose columns are the Fourier basis associated with the unknown coefficients. Finally, let 
����  be the � � � diagonal matrix whose entries are related to the derivative of  ��, evaluated on 
the components of ����. The first order optimality condition (FOOC) is:  

�������� �  �������� 
We see that the FOOC constitutes a fixed-point equation. Also, the matrix ������� is positive-

definite. Let �� be the minimum eigenvalue of ������� and �� the mean value of its eigenvalues. 
This fixed-point minimization allows us to evaluate the following index: 

� �  1 � �� ��⁄  
As will be demonstrated, this index shows a high correlation with the reconstruction error, 

measured as �∑ |
� � ��|�
� /�∑ |
�|�

� , with � being the reconstructed column. To evaluate the effectiveness of 

our index, we generated 10 vectors of size � � 96, with integer intensities randomly chosen from a uniform 
distribution  0 � 255#. With each vector we constructed 24 sparse signals with different support size % by 
choosing randomly 1, 5, … ,89, 93 data points and changing the rest to zero. Sparse signals were Fourier 
transformed and undersampled at random locations with 24 different undersampling rates (the number of 
sampled coefficients were � � 2, 6, … ,90, 94), so that the total reconstruction experiments were 10 � 24 �
24 � 5760. At each final iteration step we calculated the index �. We also performed a second experiment 
reconstructing a 96 � 96 – pixel MR image of a head, quantized in 8-bits with 95%, 90%, 80%, … , 10% and 5% 
of the readout rows. For each undersampling rate  20 reconstructions were made, each time with sampled 
coefficients chosen at uniform random locations, leading to a total of 96 � 11 � 20 � 21120 column 
reconstructions. For this experience we used a vertical finite differences sparsity transform , for each column. In 
this case the matrix ����  is related to the components of  ,����. For both experiments, we calculated the 
reconstruction error and the index �. We also considered a reconstruction exact if the error was less than 10�� 
and a threshold � � 0.95 to establish a priori if the reconstruction was exact. We performed a study of the false 
positives (� . 0.95 for an error inferior to 10��) and false negatives (� / 0.95 for an error superior to 10��) 
obtained. It is also important to notice that the index � reaches a value very close to the final value in only a few iterations. 

RESULTS: As can be seen in Fig.2 for � . 0.95 the error increases sharply, whereas for 
� / 0.95 the error stays well under 0.2. Table 1 shows that choosing the threshold  
� . 0.95 produces a 96% of correct detections, while maintaining a small percentage of 
false positives and false negatives for both experiments. For the MR image, the percentage 
of false positives halved and the number of false negatives doubled. Let us notice that, in 

average, this index produces more false positives than false negatives, so the estimations are rather pessimistic. Fig.1 shows how the index � may be used to detect 
columns where the reconstruction is not exact and, in consequence, where visual artifacts may be present.  

CONCLUSIONS: This work introduces a modified version of the fixed-point algorithm in [6]. It also introduces an index that shows a high correlation with the 
reconstruction error. We emphasize that this index does not require any knowledge a priori of the original signal, thus allowing detecting reconstruction errors and 
visual artifacts due to undersampling. Our experiences also show that this can be extended to a finite differences sparsity basis. In future work we will study how these 
ideas may be extended to other sparsity basis, such as wavelets, and what are the underlying structures that produce false positives or false negatives.  
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TABLE 1 
RANDOM VECTOR 

RECONSTRUCTION 
MR IMAGE 

RECONSTRUCTION 
GOOD DETECTIONS (%) 5534 (96%) 20542 (97.3%) 
FALSE POSITIVES (%) 205 (3.6%) 326 (1.5%) 
FALSE NEGATIVES (%) 21 (0.4%) 252 (1.2%) 

FIGURE 2 
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