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Introduction: The recently introduced Compressed Sensing (CS) theory has demonstrated that MR images can be reconstructed from a small 
number of k-space measurements [1-3]. The key assumption in CS MRI is that the image has a sparse representation in a predetermined basis. 
Selection of this sparsity basis is critically important in CS. In this work, we introduce a new sparse reconstruction framework (SPARCLE) where 

sparsity is enforced within a collection of bases rather than a single one.  Reconstruction results 
indicate that this new framework can yield significantly improved image quality.  
Theory: Let Ψ  denote the sparsity transform, ΩF the undersampled Fourier measurement matrix, 

y the acquired k-space data, and x̂ the reconstructed image. The CS theory suggests that the image 
reconstruction can be performed by solving the constrained l1 minimization problem: 

1
ˆ argmin  such that Ω=

x
x Ψx y = F x . An important consideration in l1 minimization is the selection of 

the sparsity transform Ψ . In practice, the sparsity transform is often selected from well-studied 
classes of transforms where MR images are known to be sparse. For example, orthonormal wavelet 
transforms are often used as the sparsity transform in CS MRI. Within this class of transforms, 
there is usually no strong preference to select a particular wavelet basis since many wavelets yield 
qualitatively and quantitatively similar reconstruction. This point is illustrated in Fig. 1. A T2-
weighted axial MR image was retrospectively undersampled in k-space to retain coefficients along 
64 radial lines and the above l1 minimization framework was used to reconstruct images using 
orthonormal Daubechies wavelets with different number of vanishing moments as the sparsity 
transform. Sections of the resulting images are shown in Figure 1 to enable closer inspection of the 
reconstruction artifacts. In the figure, it is easy to see that while the overall reconstruction quality is 
very similar for the different bases, each image exhibits different reconstruction artifacts. Our 
proposed framework originates from this key observation.  
Method:  The requirement of incoherence between the sparsity and measurement bases in CS 
means that undersampling artifacts accumulate incoherently and manifest themselves as small 
coefficients in the sparsity basis. By eliminating the small coefficients that are most likely due to 
undersampling artifacts or noise, the desired signal is recovered. In our new approach, the sparsity 
constraints are enforced in a collection of bases. Each basis provides a sparse representation and 
captures unique characteristics of the signal. In addition, the undersampling artifacts are different 
in each basis. A large coefficient due to undersampling artifacts in one basis (which would 
normally be hard to distinguish from signal and would result in artifacts in the final image) is likely 
to result in small coefficients in the other basis. Thus, by requiring that the result be sparse in 
multiple bases, a significantly larger portion of the undersampling artifacts can be removed. The 
pseudo-code for the proposed algorithm is presented in Fig. 2. The signal is iteratively projected 
onto a collection of bases and the small coefficients in each basis are removed by thresholding. 
This step is followed by projection of the signal back onto the Fourier basis and assertion of 
consistency with measured data. These steps are repeated in an iterative fashion for a fixed number 
of iterations or until convergence is achieved. The algorithm was tested using a radial-FSE dataset 
which was acquired with TR=4.5s, FOV=26cm and ETL=4 with 8 coils using 256 radial views and 
256 points along each radial view. The data was retrospectively subsampled along 64 radial lines in 
k-space and images were reconstructed using l1 minimization as well as the proposed algorithm. In 
the proposed technique, Daubechies wavelets with vanishing moments of 1,3,5,7, and 9 were used. 
Results: Fig. 3a shows the original image. The image obtained using the proposed technique is 
shown in Fig 3b. For reference, images obtained using l1 minimization with the Daubechies 
wavelets 4 and 6 are illustrated in Figs. 3c and 3d, respectively. It can be seen that the images 
obtained using l1 minimization contain excessive smoothing, ringing artifacts, and reduced contrast, 
while the image obtained using the proposed technique is much closer to the image obtained from 
the full dataset. 

Conclusion: A novel sparse reconstruction technique is introduced that is based on simultaneous sparsity in a collection of bases. The proposed 
method is demonstrated in radial MRI and results in significantly improved reconstruction quality compared to conventional CS reconstruction. 
While results are presented employing a collection of wavelets bases, the proposed method is general and can be easily used with other bases as well.  
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