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Introduction: The recently introduced Compressed Sensing (CS) theory has demonstrated that MR images can be reconstructed from a small
number of k-space measurements [1-3]. The key assumption in CS MRI is that the image has a sparse representation in a predetermined basis.
Selection of this sparsity basis is critically important in CS. In this work, we introduce a new sparse reconstruction framework (SPARCLE) where
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sparsity is enforced within a collection of bases rather than a single one. Reconstruction results
indicate that this new framework can yield significantly improved image quality.

Theory: Let ¥ denote the sparsity transform, F, the undersampled Fourier measurement matrix,
y the acquired k-space data, and X the reconstructed image. The CS theory suggests that the image

reconstruction can be performed by solving the constrained |; minimization problem:
K= argmjnHW‘l such thaty =F, X - An important consideration in |; minimization is the selection of
X

the sparsity transform ¥ . In practice, the sparsity transform is often selected from well-studied
classes of transforms where MR images are known to be sparse. For example, orthonormal wavelet
transforms are often used as the sparsity transform in CS MRI. Within this class of transforms,
there is usually no strong preference to select a particular wavelet basis since many wavelets yield
qualitatively and quantitatively similar reconstruction. This point is illustrated in Fig. 1. A T2-
weighted axial MR image was retrospectively undersampled in k-space to retain coefficients along
64 radial lines and the above |; minimization framework was used to reconstruct images using
orthonormal Daubechies wavelets with different number of vanishing moments as the sparsity
transform. Sections of the resulting images are shown in Figure 1 to enable closer inspection of the
reconstruction artifacts. In the figure, it is easy to see that while the overall reconstruction quality is

- - — - very similar for the different bases, each image exhibits different reconstruction artifacts. Our
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multiple bases, a significantly larger portion of the undersampling artifacts can be removed. The
pseudo-code for the proposed algorithm is presented in Fig. 2. The signal is iteratively projected
onto a collection of bases and the small coefficients in each basis are removed by thresholding.
This step is followed by projection of the signal back onto the Fourier basis and assertion of
consistency with measured data. These steps are repeated in an iterative fashion for a fixed number
of iterations or until convergence is achieved. The algorithm was tested using a radial-FSE dataset
which was acquired with TR=4.5s, FOV=26cm and ETL=4 with 8 coils using 256 radial views and
256 points along each radial view. The data was retrospectively subsampled along 64 radial lines in
k-space and images were reconstructed using |; minimization as well as the proposed algorithm. In
the proposed technique, Daubechies wavelets with vanishing moments of 1,3,5,7, and 9 were used.
Results: Fig. 3a shows the original image. The image obtained using the proposed technique is
shown in Fig 3b. For reference, images obtained using |; minimization with the Daubechies
wavelets 4 and 6 are illustrated in Figs. 3c and 3d, respectively. It can be seen that the images
obtained using |; minimization contain excessive smoothing, ringing artifacts, and reduced contrast,
while the image obtained using the proposed technique is much closer to the image obtained from
the full dataset.

Conclusion: A novel sparse reconstruction technique is introduced that is based on simultaneous sparsity in a collection of bases. The proposed
method is demonstrated in radial MRI and results in significantly improved reconstruction quality compared to conventional CS reconstruction.
While results are presented employing a collection of wavelets bases, the proposed method is general and can be easily used with other bases as well.
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