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INTRODUCTION: Many recent techniques have been introduced for high angular resolution diffusion imaging (HARDI) [1 and references therein], to infer the 
diffusion or fiber orientation distribution function (ODF) of the underlying tissue structure.  These methods, mostly designed for fiber tractography, are normally based 
on a single shell acquisition and can only recover some angular information contained in the ensemble average propagator (EAP). The (EAP) describes the full three-
dimensional (3D) average scattering of water molecules in biological tissue. It can thus provide more information about tissue properties than the ODF.  Various 
methods already exist to estimate the EAP such as [2]-[8], but all have their limitations.  Among the most commonly used, diffusion tensor imaging (DTI) [2] is limited 
by the Gaussian assumption and cannot account for complex fiber configurations, and diffusion spectrum imaging (DSI) [3] is a model-free approach but requires 
hundreds of diffusion weighted measurements to obtain the EAP. We present diffusion propagator imaging (DPI), a simple and linear analytical EAP reconstruction 
using Laplace's equation.  The solution is computed from only two or more different b-value shells.  Robust EAP is possible with less than 100 measurements per shell.     
 
METHODS: If we suppose that Laplace's equation can describe the 3D q-space MR diffusion signal, E(q) = S(q) / S0, can be written as,  
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where q is a 3D vector in q-space, q = |q|, u is a 3D unit vector, Yj is the modified even, symmetric, real, and orthogonal spherical harmonic (SH) basis [1] and l(j) is the 
order associated with the jth element of the SH basis. Boundary conditions need to be given to solve for the coefficients, which in our problem are the signal without 
diffusion gradient S0 (when q = 0) and at least two different b-value shell measurements.  Intuitively, this can be thought as the heat equation between each shell. A 
priori, there is no physical reason why this should be so but the spherical Laplace equation can model the diffusion signal satisfactorily and allows one to solve for the 
EAP analytically. Under the narrow pulse assumption, the relationship between the diffusion signal attenuation and the EAP is given by a Fourier transform (FT),  
P(R) = FT[ E(q) ].  After some algebra and using properties of the spherical harmonics and spherical Bessel functions, we can write the EAP as 
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P(R0r) represents the probability of finding a water molecule at distance R0r for the origin.  Hence, it can be viewed as the EAP values on a sphere of radius R0.  Note 
that the DOT [5] reconstruction is similar in spirit but starts from a mono or bi-exponential decay assumption of E(q).  Here, our solution has an analytical form and is 
linear.  It only depends on the cj coefficients. The dj coefficients have disappeared in the EAP reconstruction. However, these dj are needed for accurate E(q) estimation.  
 
RESULTS: The proposed method was used to estimate the diffusion signal and the associated EAP on ex vivo phantoms [9] with fibers crossing at 90° and 45°, using a 
a 1.5T system, TE/TR=130ms/(4.5s,12.0s) (45°and 90°), BW=200KHz and b-values of 2000, 4000, 6000, 8000 s/mm2, with 4000 uniformly distributed orientations.   
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N = 4000 directions per shell, and below, only N=15 directions per shell. d) uses only the two outmost shells (b=2000 and 8000 s/mm2) and SH order 6 with, on top, all 
N=4000 directions per shell, and  below, only N=40 directions per shell. The 90° and 45° crossing configuration is clearly distinguishable for high R0 compared to the 
classical single shell q-ball ODF reconstruction. Having an analytical solution also allows one to estimate the propagator for any R0, i.e. higher than maximum q-value.  

DISCUSSION: This work shows two important contributions. 1) The q-space diffusion signal can be modeled using spherical Laplace's equation. 2) The EAP can be 
estimated analytically with a simple and linear solution. The dsignal estimation and EAP reconstruction were validated on ex vivo phantoms.  Using four shells in q-
space with only 15 diffusion measurements per shell, the signal and EAP of SH order 4 were reconstructed as robustly and precisely as when using 4000 measurements 
per shell.  Moreover, using only the two outermost shells in q-space (2000 and 8000 s/mm2 shells), we were able to reproduce similar EAP reconstructions.  Finally, low 
separation angles, such as in the 45° phantom, can be distinguished for high R0, if one uses a SH order of 6 or higher. Therefore, it seems promising that DPI 
acquisitions with less than 100 diffusion measurements, from two or more shells, can be sufficient to robustly reconstruct the diffusion propagator on the human brain.   
References: [1] Descoteaux, PhD Thesis, 2008. [2] Basser et al, JMR B, 1994. [3] Wedeen et al, ISMRM, 2000. [4] Liu et al MRM, 2004. [5] Ozarslan et al, 
NeuroImage, 2006. [6] Lu et al, NMR Biomed, 2006. [7] Pickalov & Basser, ISBI, 2007.  [8] Ozarslan et al, ISMRM. 2008. [9] Poupon et al, MRM, in press, 2008.  

 90° crossing, sampling scheme N 45° crossing, sampling scheme N 
Shells N=4000 N=60 N= 40  N=25 N=15 N=4000 N=60 N=40  N=25 N=15 
2000 2.6% 2,7% 2.6% 2,6% 2.8% 2.1% 2.1% 2.2% 2.1% 2.3% 
4000 4.3% 4.3% 4.3% 4.3% 5.1% 4.0% 4.0% 4.0% 4.0% 4.0% 
6000 5.1% 5.2% 5.2% 6,2% 6.2% 5.8% 5.8% 5.8% 5.8% 6.3% 
8000 8.5% 8.5% 8.5% 8.6% 8.6% 8/5% 8.5% 8.5% 8.5% 8.5% 

Original signal (color) vs estimated signal (black)  90° crossing, order 4, using all multiple shells 
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b) b = 2000 s/mm²     4000s/mm²        6000s/mm²       8000s/mm² c) R0  0.1μm     0.25μm     0.5μm       1μm          2μm            3μm          5μm       10μm 

Figure a) illustrates the 90° and 45° phantoms with associated 
diffusion ODF from q-ball imaging [1]. In b), the original diffusion 
signal (color) and estimated signal (black) of order 4 are compared 
using all four available shells. In c), the table quantitatively illustrates 
the percentage error between original and estimation signal for 
different sampling scheme N.  As seen in b) and the table, estimation 
is accurate and remains robust even for lower gradient sampling 
schemes, such as N = 15 to 60 measurements per shell. Figures c) and 
d) show the associated EAP reconstructions for different radius R0 at 
90° and 45°.  c) uses all four shells and SH order 4 with, on top, all 

 45° crossing, order 6, using two outmost shells b =2000 and 8000 s/mm 
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d) R0  0.1μm    0.25μm     0.5μm        1μm         5μm         10μm        20μm       50μm 
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