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Background 
Diffusion tensor imaging (DTI), a gaussian anisotropic diffusion model, provides mean diffusivity 
(MD) and fractional anisotropy (FA) metrics that describe diffusion in brain tissue (white and 
gray matter).  However, the widely recognized non-gaussian diffusion behavior in tissue has 
motivated higher order schemes (q-ball, HARDI, DSI) to accurately describe the tissue structure. 
In generalized DTI, higher order tensors are invoked to represent the orientational diffusion 
profile [1-3].  Diffusional kurtosis imaging (DKI) measures the displacement non-gaussianity or 
“kurtosis” [4,5].  The directionally averaged mean kurtosis (MK) has been shown to be a 
potentially valuable disease marker in such illnesses as Alzheimer’s and ADHD [6,7].  Recent 
work has also used kurtosis projections along the diffusion tensor [8], and the kurtosis tensor has 
been used to estimate the full orientation distribution function (ODF) [9].  Another strategy, 
analogous to the principal diffusivities of the diffusion tensor, is to seek 
eigenvalues/tensors/vectors of the kurtosis tensor as its characteristic features.  Though this is 
challenging for a rank-4 object, there are mathematical prescriptions for deriving such parameters 
[10,11].  The present study employed spectral decomposition [10] of the diffusion kurtosis tensor, 
in order to understand the kurtosis variation in the brain and supplement tractography techniques. 
Methods 
Scans were performed on a healthy volunteer in a full body Siemens Tim Trio 3 T scanner with a 
12-channel head coil.  DKI data used a twice-refocused bipolar diffusion gradient EPI sequence 
(2 x 2 x 2.5 mm resolution, 100 x 100 matrix, 50 slices, iPat = 2, 64 directions, b = 0 (11 avgs.) 
,1000, 2000 s/mm2 (2 avgs ea.))  Analysis was performed using code written in Igor Pro. For each 
direction n̂ , apparent diffusion (D ( n̂ )) and apparent kurtosis (K( n̂ )) were extracted: 
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Apparent diffusion coefficients were used to estimate the diffusion tensor Dij, and the kurtosis 
tensor Wijkl  was determined according to: 
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Note that this definition implies qualitative distinctions between apparent kurtosis and kurtosis 
tensor.  The spectral decomposition described in ref. [10] was used to estimate 6 eigenvalues σk

2 
and eigentensors Ek (3 x 3) of the kurtosis tensor W.  Eigentensors’ eigenvalues γi k  and 
eigenvectors vi

k (3 x 1) were also calculated.  These were used to construct composite 
“eigensurfaces” representing the projection P of W along r̂  by 
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Maps were generated of the standard DTI indices, the kurtosis eigenvalues σk
2 and their arithmetic 

mean, the experimental mean kurtosis MK, and eigensurface maps of several areas of the brain. 
Results 
Figure 1 shows parameter maps for a single slice.  DTI maps MD, FA, and directionally encoded 
colormaps show standard contrast in white and gray matter.  MK shows higher values in white 
and gray matter, though both are nonzero.  Very similar contrast is shown in the image of the 
mean of the kurtosis eigenvalues.  The eigenvalue maps show striking gray matter / white matter 
contrast as well, particularly for the principal eigenvalue.  White matter kurtosis spans a large range of 
values across the eigenvalue set (0.1< σ2 <2), while gray matter values occupy a smaller range 
(0.3<σ2<1.2).  Figure 2 shows kurtosis eigensurfaces for a highlighted region of at the level of the pons; 
these surfaces qualitatively indicate crossing longitudinal and transverse fibers.  An eigensurface at a 
frontal white matter fiber crossing is shown along with the eigenvectors vi

k derived from the highest and 
lowest kurtosis eigenvalues.  These vectors point out the dominant lobes of the eigensurface. 
Discussion 
Spectral decomposition allows a deeper inspection of features of the kurtosis tensor both in magnitude 
and orientation.  White matter’s structural anisotropy, including areas of fiber crossing, gives it a higher 
dynamic range of kurtosis eigenvalues than in gray matter.  The composite eigensurfaces seem to be 
sensitive to multiple intersecting fiber species, as shown in Figure 2, where multiple eigenvectors 
identify characteristic displacement features. This behavior may also arise from anisotropic barrier 
density (which impacts kurtosis).  One application of this processing would involve using these vectors 
(e.g., from the principal kurtosis eigenvalue) for tractography, which future work will investigate. 
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Figure 1: Diffusion parameter maps.  Top : DTI indices 
MD, FA, and direction encoded colormap.  MK : 
experimental mean kurtosis.  <σ2> : mean of kurtosis 
eigenvalues. Bottom: Kurtosis eigenvalue maps (1-6). 

Figure 2. (a) Region of pons for eigensurface display 
in (b).  (c) Frontal white matter voxel for eigensurface 
in (d), which includes eigenvectors vi

k  for the highest 
(blue) and lowest (brown) kurtosis eigenvalues. 
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