## <sup>17</sup>O T<sub>1</sub>/T<sub>2</sub>\* tissue-relaxation rates with anatomical contrast in the rat brain at 16.4 T

## H. M. Wiesner<sup>1</sup>, D. Z. Balla<sup>1</sup>, R. Pohmann<sup>1</sup>, W. Chen<sup>2</sup>, K. Ugurbil<sup>2</sup>, and K. Uludag<sup>1</sup>

<sup>1</sup>High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, <sup>2</sup>Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States

**Introduction** The measurement of cerebral metabolic rate of oxygen (CMRO<sub>2</sub>) via direct NMR detection of the stable oxygen isotope <sup>17</sup>O is a promising tool to study neuroenergetics, brain activity and pathology [1]. Due to the low natural abundance of  $H_2^{17}O$  (0.037%) and fast relaxation rates of the <sup>17</sup>O nucleus [2-4], sequences with short acquisition delays and optimized acquisition parameters are crucial for <sup>17</sup>O imaging of metabolically produced cerebral water. It has been demonstrated that signal-to-noise ratio (SNR) of <sup>17</sup>O NMR increases almost quadratically with  $B_0$  due to its field-independent quadrupolar relaxation properties [2, 3]. Thus, in comparison to studies at lower field strengths, the increased SNR available for MRS imaging (MRSI) at 16.4 T allows enhanced spatial resolution. Therefore, the aim of this study was the tissue-specific determination of <sup>17</sup>O relaxation times and the anatomical imaging of <sup>17</sup>O contrast in the rat brain.

**Methods** A 3-D chemical shift imaging sequence was chosen to minimize acquisition delays (here: 456  $\mu$ s) for in-vitro & in-vitro MRSI [5]. All acquisitions were performed on a 16.4 Tesla magnet (Magnex/Varian Inc.) with a 26 cm bore diameter, maximal gradient-strength 1 T/m (Resonance Research Inc.) interfaced to an Avance III - Paravision 5.0 (Bruker BioSpin) console. Samples were excited by custom-built silver wire surface-coils (diameter 1 & 2 cm) tuned at  $\omega_0$ =94.63 MHz with a 50- $\mu$ s RF hard pulse adjusted to a nominal flip angle of 90° for each sample and the inversion pulse was achieved by doubling the 90° pulse width. Spectral bandwidth was 9369 Hz (~100 ppm) throughout all scans.

Samples In-vitro: 25 g water-phantom with enriched 10% H<sub>2</sub><sup>17</sup>O in a glass cylinder. Ex-vivo: 1 male Wistar rat (550 g).

<u>In-vivo study</u> 4 self-breathing isoflurane anesthetized male Wistar rats (470±50 g) with head fixated in a stereotaxic frame were studied. Exhaled gases were continuously monitored and body temperature was maintained at rectally measured  $37\pm0.3$  °C with an electric heat blanket. T<sub>1</sub> and T<sub>2</sub>\* methodologies were validated on the enriched H<sub>2</sub><sup>17</sup>O phantom in terms of distance from the coil and flip-angles.

<u>Parameters for <sup>17</sup>O T<sub>1</sub> measurements (ex-vivo/in-vivo at natural abundance H<sub>2</sub><sup>17</sup>O concentration)</u>: An 8-step inversion recovery method (TI 1.5 - 50 ms) with repetition times TR>5T<sub>1</sub> was used. Other parameters are: FOV  $3.5 \times 3.5 \times 2.5$  cm<sup>3</sup>; matrix  $15 \times 15 \times 7$ ; TR 65 ms, spectral acquisition points 94; total acquired FIDs 51200 (max. 339 averages in the center of k-space) with an overall duration of 55 min per 3D <sup>17</sup>O MRSI volume.

<u>Parameters for <sup>17</sup>O T<sub>2</sub>\* measurements (ex-vivo/in-vivo)</u>: FOV 3.62×3.62×2.5 cm<sup>3</sup>; matrix 51×51×7 (voxel-volume: 1.8  $\mu$ l); TR 5.08 ms with an acquisition duration of 3.91 ms with 37 spectral points; total acquired FIDs 409600 (max. 205 averages in the center of k-space) with an overall duration of 34 min per 3D <sup>17</sup>O MRSI volume. Additional FLASH images, although at lower SNR due to longer acquisition delays, were used for qualitative verification of T<sub>2</sub>\*-contrast and tissue separation obtained by 3D-CSI.

Data were reconstructed and further processed using MATLAB (Matworks): 1. Zero-filling and line-broadening were used for anatomical visualization of muscle, cortex and deeper (sub-cortical) brain tissue in images of the spectral integral (Fig. 1a). 2. Relaxometry was performed on raw-data:  $T_1$  estimation was based on fitting of spectral peak intensity at different inversion times according to a mono-exponential function. Estimation of  $T_2^*$  was based on the decay rate of FIDs transformed into image space (Figs. 1b and 1c). All voxels selected for relaxometry were masked to have at least a spectral SNR > 12 and were less than 1 cm distant from the coil (Fig. 1c). Results



Figure 1 (a) In-vivo CSI of natural abundance  $H_2^{17}$  O in a coronal slice of a rat head with inner brain-structures (highlighted by dotted lines for outlining cortical and deep sub-cortical brain regions). (b) log-scaled decays (in image-space) of muscle (blue) and brain tissue (red) of an in-vivo rat. (c)  $T_2^*$  map of the same slice as in (a) with structures of distinct  $T_2^*$  relaxation (scale in ms).

| Phantom      | T <sub>1</sub> : 6.24±0.37 (ms)                  | T <sub>2</sub> *: 2.24±0.09 (ms)                   |                                             |
|--------------|--------------------------------------------------|----------------------------------------------------|---------------------------------------------|
| Ex-vivo rat  | T <sub>1</sub> : 4.09±0.05 (226 μl brain tissue) | $T_2^*$ muscle tissue: 2.31±0.47 (86 µl)           | T <sub>2</sub> * cortex: 2.48±0.51 (118 μl) |
| In-vivo rats | T <sub>1</sub> : 6.87±0.46 (155 μl brain tissue) | T <sub>2</sub> * muscle tissue: 1.50±0.20 (442 µl) | T <sub>2</sub> * cortex: 2.02±0.24 (597 μl) |

Relaxation rates in ms (mean± std) and volume of selected voxels in brackets. Signal decay was mono-exponential.

**Conclusions** We have shown, for the first time, natural abundance <sup>17</sup>O brain images with anatomical contrast at 16.4 T. Significant difference in  $T_2^*$  of muscle tissue in comparison to cortex tissue was determined (Fig. 1b and Table). Fast  $T_2^*$  relaxation rate of muscle tissue might be beneficial for reducing partial-volume contaminations if read-out and TR is optimized for cortex  $H_2^{17}O$ . Furthermore, intra-cortical differences in intensity and  $T_2^*$ -relaxation were observed (e.g. cortex vs. deep sub-cortical areas in Figs. 1a and 1c), but their assignment needs <sup>1</sup>H-MRI anatomical overlay. The  $T_1/T_2^*$  values determined can be used to tune sequence parameters (e.g. Ernst angle, read-out duration, TR) to maximize SNR per unit time [6, 7], as required in functional CMRO<sub>2</sub> measurements by short inhalations of <sup>17</sup>O<sub>2</sub> gas [1].

Acknowledgements: The study was funded by the Max Planck Society and supported in part by NIH grants: NS41262 and P41 RR08079. References: [1] Zhu et. al. PNAS (2002), [2] Thelwall et. al. Proc. ISMRM (2003), [3] Zhu et. al. MRM (2001), [4] de Graaf et. al. JMR (2008), [5] Brown et. al. PNAS (1982), [6] Ernst et. al. Rev. Sci. Inst. (1966), [7] Pohmann et.al. JMR (1997).