

Fluorine-19 MR molecular imaging of angiogenesis on Vx-2 tumors in rabbits using $\alpha_v\beta_3$ -targeted nanoparticles

J. Keupp¹, S. D. Caruthers^{2,3}, J. Rahmer¹, T. A. Williams³, S. A. Wickline³, and G. M. Lanza³

¹Philips Research Europe, Hamburg, Germany, ²Philips Healthcare, Andover, MA, United States, ³Washington University, St. Louis, MO, United States

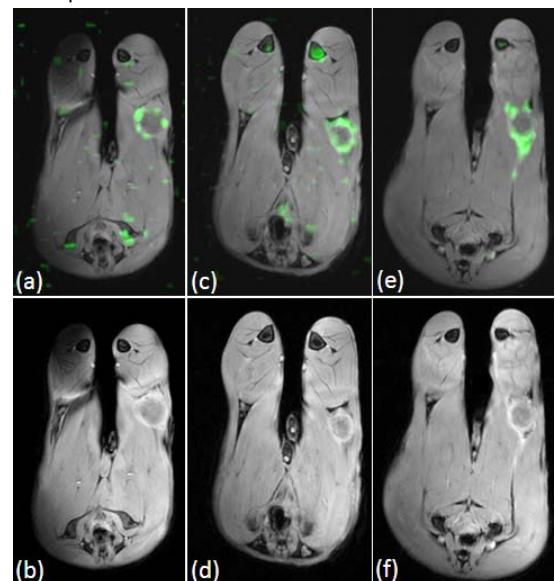
Introduction

Anti-angiogenic therapy in combination with established chemotherapy or radiation therapy has entered clinical practice for lung, colon and breast cancer [1]. However, effectiveness and optimal timing of anti-angiogenic pre-treatment is substantially varying among patients. Given the high cost and severe side effects, there is a strong clinical need for enhanced patient stratification, which could be based on MRI of angiogenesis using targeted imaging agents. $\alpha_v\beta_3$ -integrin targeted nanoparticle (NP) emulsions [2], labeled with R1-enhancing Gd-chelates, were previously shown to allow three-dimensional MR mapping of tumor angiogenesis for a variety of tumor models [3, 4] in small animals. These studies were based on $\Delta R1$ mapping from two image sets taken before and after NP injection. The present study shows, that the perfluorocarbon (PFC) core of the same targeted NP can be used as a ¹⁹F MR label to map angiogenesis around Vx-2 tumors (adenocarcinoma) in rabbits. With simultaneous ¹⁹F and ¹H MR [5], diagnostic imaging is only required at a single time point post-injection injection and may offer the ability of direct absolute quantification.

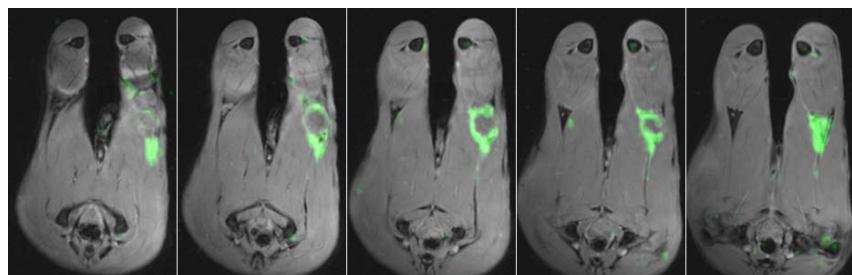
Methods

Male New Zealand White rabbits (~2 kg, N=3) were implanted in one hind leg with 2-3 mm Vx-2 carcinoma tumors (National Cancer Institute, MD), which grew to 15 mm within 2 weeks. Imaging was performed 3h post-injection of 1.0 ml/kg of $\alpha_v\beta_3$ -targeted 15-5 perfluorocrownether (20 vol%) NP, incorporating Gd-DTPA-bis-oleate in the outer surfactant (which also reduces fluorine T1 to about 400ms). The rabbits were initially anesthetized with xylazine/ketamine *i.m.* and maintained with a 20 ml/h ketamine infusion. All animal care and protocols were in accordance with institutional guidelines. The study was performed on a 3T clinical whole-body scanner (Achieva, Philips Healthcare, The Netherlands) using a dual-tuned transmit/receive surface coil (7x12 cm) and a dual ¹⁹F/¹H spectrometer system [5]. 3D gradient-echo sequences with concurrent dual-frequency RF/acquisition for ¹⁹F and ¹H were used [5] at two different resolutions: (i) 2.9x2.9x4.0 mm³, matrix 48², 15 slices, TR/TE=13/6.0 ms, flip angles $\alpha_{19F}/\alpha_{1H} = 40^\circ/10^\circ$, pixel bandwidth=100 Hz, 128 averages, scanning time 24 minutes. (ii) 2.19x2.19x4.0 mm³, matrix 64², 140 averages, TR/TE=12/6.0 ms, 35 min. High-resolution T1-weighted GRE images were recorded for anatomical co-registration (resolution 0.55x0.55x4.0 mm³, TR/TE=24/6.5 ms, $\alpha=35^\circ$). For sensitivity calibration of the surface coil, actual flip-angle imaging sequences (AFI) were used, and the signal decay with distance from the surface could be corrected using a GRE signal model. For signal comparison, a calibration sample with PFC NP (0.3 mol_{19F}/l) in agar was added for all experiments at a fixed position on the surface coil (not visible in the selected image planes).

Results and Discussion


Figure 1 displays 3 selected image planes from different rabbits, with T1-weighted ¹H images in the lower row and overlays with the ¹⁹F images (green) using parameter set (i) in the upper row. All tumors developed to a diameter of 15±1 mm, and the contrast-enhanced images clearly revealed the angiogenesis, which can be identified by the bright rim in the T1-weighted images as well as by annular hot-spots of fluorine signal intensity. Angiogenesis in this tumor model is a heterogeneous process [3], which is clearly appreciated in the non-uniform ¹⁹F signal distribution at the periphery of the tumor. Other ¹⁹F enhancing regions comprise tissue structures adjacent to the tumor, where angiogenesis can be expected as well (e.g. in supplying vessels). Some fluorine signal is also observed in the bone marrow and epiphyseal heads. In order to demonstrate 3D mapping capability of the applied simultaneous GRE sequences, Figure 2 shows a series of 5 adjacent slices around the tumor, which represent an overlay of ¹⁹F images from the simultaneous sequence with parameter set (ii) and T1-weighted ¹H images. ¹⁹F signal is visible all around the tumor, with varying intensity relating to regional angiogenesis. There is no ¹⁹F signal from the tumor center, which is not involved in the neovascular growth front. The calibrated signal intensity on the tumor rim shows a maximum local concentration of NP corresponding to 70 nmol_{19F}/l, or 2.4 μ mol_{19F}/voxel, which is well above the detection limit of about 300 nmol_{19F}/voxel (SNR=5;10 minutes) [6].

Conclusion


The present study demonstrates pre-clinical feasibility of ¹⁹F/¹H MR using integrin targeted NP for non-invasive, 3D quantitative assessment of tumor angiogenesis, which may be relevant for patient segmentation and management. The ¹⁹F signal offers a high specificity and the workflow and precision is enhanced, because only post-injection imaging is required. Moreover, this diagnostic application can be combined with anti-angiogenic therapy for a new "theranostic" approach [4]: Anti-cancer drugs linked to the targeted NP, could be strongly effective locally even in minute dosage and thus largely avoid side effects.

References

1. Carmeliet P, Nature Med. 6: 389 (2000)
2. Winter PM et al., Cancer Res. 63: 5838 (2003)
3. Schmieder AH et al., FASEB J. (2008) [Aug.12 Elec.pub.]
4. Winter PM et al., FASEB J. 22(8):2 758 (2008)
5. Keupp J et al., Proc. ISMRM 14: 102 (2006)
6. Keupp J et al., Proc. ISMRM 15:1334 (2007)

Figure 1: Selected slices from image sets of 3 different rabbits with implanted Vx-2 tumors taken on a clinical 3.0 T scanner (Achieva, Philips Healthcare) using a dual-tuned surface coil: (a,c,e) overlay ¹H and ¹⁹F (green), (b,d,f) T1-weighted ¹H images. ¹⁹F images were taken at a resolution of 2.9 mm within 24 minutes.

Figure 2: 3D imaging of a Vx-2 tumor at an in-plane resolution of 2.19 mm (slice thickness 4 mm): 5 adjacent image planes out of 15 are shown. Simultaneous ¹⁹F and ¹H acquisition was completed within 35 minutes. Anatomical co-registration is demonstrated by overlay of ¹⁹F (green) and high-resolution T1-weighted ¹H GRE images.