

Quantification of CMRO₂ and CBF using Simultaneous NIRS and fMRI

S. Tak¹, and J. Ye¹

¹Bio and Brain Engineering, KAIST, Daejeon, Daejeon, Korea, Republic of

Introduction : We introduce an accurate technique to estimate the cerebral metabolic rate of oxygen (CMRO₂) and cerebral blood flow (CBF) using simultaneously measured near infrared spectroscopy (NIRS) and blood oxygenation level dependent (BOLD) fMRI signals. Owing to simultaneous acquisition of both fMRI and NIRS, separate hypercapnia condition or arterial spin labeling (ASL) acquisition are not necessary to quantify CMRO₂ and CBF, which greatly improves the accuracy of the proposed method. The dynamic coupling ratio of CBF changes to CMRO₂ changes has been also investigated. Experimental results using finger tapping task showed that the activation pattern of CBF calculated using NIRS-SPM software [1] is more specific to the primary motor cortex than fMRI BOLD and NIRS-HbR signal. Furthermore, the dynamic couple ratio coincides with the existing results from the literature [2].

Theory : A robust estimation of CMRO₂ is important to understand the neural-metabolic-hemodynamic relationship. fMRI approach of Eq. (1) estimates CMRO₂ from BOLD and CBF [3]. However, there are two main drawbacks in this approach. First, an ASL technique which measures CBF has low signal to noise ratio due to the small amplitude of the flow related MRI signal. Second, the hypercapnic condition is necessary to calibrate the scaling factor (M) between BOLD and HbR concentration. NIRS approach of Eq.(2) determines the CMRO₂ from HbR and total-hemoglobin (HbT) [4]. However, there exists many unknown hyperparameters that determine the accuracy of NIRS estimates.

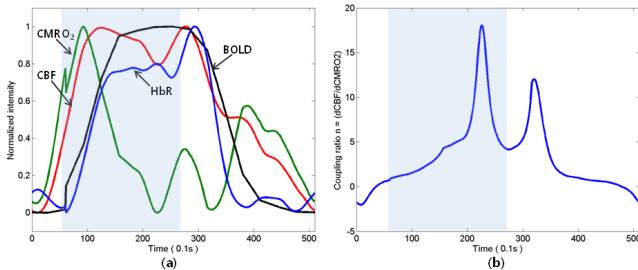


Fig. 1. Averaged time course of (a) CBF, CMRO₂, HbR, BOLD, (b) coupling ratio n.

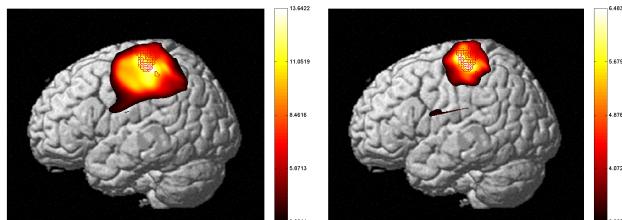


Fig. 2. Activation map of HbR and CBF, respectively ($p < 0.05$, tube formula correction).

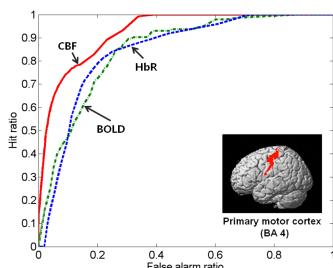


Fig. 3. Receiver operation characteristics (ROC) for CBF, HbR, and BOLD.

(BA4) were assumed as ground-truth. ROC analysis in Fig. 3 showed that the area under ROC curve for CBF was largest, indicating CBF activation map are more correlated with neural activity.

Conclusion : We have estimated CBF and CMRO₂ from simultaneously measured NIRS and BOLD signals without hypercapnic condition and ASL measurements. Experimental results showed that CMRO₂ increased before CBF increased and the amplitude of CBF changes was much higher than that of CMRO₂. Furthermore, CBF activation was more correlated with neural activity than that of HbR and BOLD.

Reference

- [1] Ye JC et al. NeuroImage 2008, doi: 10.1016/j.neuroimage.2008.08.036.
- [2] Leontiev et al. NeuroImage 2007;35: 175-184.
- [3] Davis TL et al. Proc. Natl. Acad. Sci. USA 1995;95: 1834-1839.
- [4] Boas et al. Phys. Med. Biol. 2003;48: 2405-2418.
- [5] Buxton RB et al. Magn. Reson. Med. 1998;39: 855-864.

Acknowledgement : This research was supported in part by a IT R&D program of MKE/IITA[2008-F021-01]. This work was also supported in part by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF-313-D00593).