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Introduction Parallel RF transmit (Tx) offers additional degrees of freedom (redundancy) in excitation pulse design [1,2]. One application of this
redundancy is accelerating multidimensional selective excitation by under-sampling the excitation k space. Unlike the spatial encoding task in imaging,
where the underlying image is unknown, in the case of excitation pulse design the target excitation profile is known a priori. This provides a Bloch
equation-based RF pulse design with great opportunities for optimization. In principle, the target profile, B1 maps and error tolerance (TOL) determine
where to ideally under-sample the k space with optimal sparsity. It is desirable to have a sparsifying strategy that exploits this pre-knowledge [3,4]. We
propose a k-space sparsifying method based on a greedy-wise algorithm. Our approach is inspired by the theoretical results in sparse signal
approximation [5,6,7] and the Compressed Sensing (CS) effort on the imaging side [8,9]. In the sense of ‘sparsity’ our approach can be seen as a
counterpart to the multi-coil CS in RF excitation. Simulation and phantom results showed good excitation profile particularly in high reduction-factor
cases, where the conventional non-adaptive under-sampling method is limited.

Theory Parallel Tx pulse design is described in a matrix notation by p = ; Diag(S;)*®@+* 5 where pis the target profile, £;is the rf waveform for the j-th
Tx-coil, 5;is the B1 map of the j-th Tx-coil, @ is the Fourier Transform matrix: [@x, .. 0w, Where @4 = exp(ikx) is the Fourier base for j-th Nyquist k
location. The goal of parallel Tx adaptive sparse k/RF joint design is to represent the target p by using fewest k locations as possible given TOL. This
perspective leads us to sparse approximation with redundancy [5,6,7], which can be approached either by solving L1-regularized-LS problem [7,4] , or
by greedy style method [5,6], where one stepwise introduces the next ‘most important’ k point. If in Fourier domain the target profile and the B1 maps
have sparse representations, one can end up with a much smaller number of k locations than the number of k locations required by Nyquist theorem. For
parallel Tx acceleration one needs simultaneous sparsity over all the channels [4], which makes the greedy approach a more suitable choice.

Matching Pursuit (OMP) [5,6] method. (Notations: N = number of spatial pixels, N, =

Method Our proposed method is a modified version of the so-called Orthogonal
the number of channels, Ny = the number of k locations) Z
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avoid unnecessary spatial singularities we apply a smoothly decaying-to-zero 08
extrapolation of the B1 profiles into the don’t-care region outside the imaged object. 08
Calculation of a k trajectory that efficiently traverses an arbitrary set of k space §
locations is non-trivial. We currently use an approach that connects the locations in ;.‘,0"
a suboptimal EPI-like manner. For gradient waveform design we use (i) a routine 02 S~ -
based on [11] or (ii) a suboptimal extended version based on [10]. % 35 55
Results We validat_ed the adgptive OMP pargllel T)f method usin_g Bloch sim_ulations * h) OMP Sparse pTx. | i) OMP Sparse. R=10.4,
and phantom experiments. Fig.1 shows the simulation results using 6 Tx Coils. g) Error curve R=10.4, k-Traj. Bloch Simulation

Fixed under-sampling strategy delivered reasonable results at a moderate reduction Figure 1

factor (R=3.3 with 6 Ch.). With higher R the quality is limited. Adaptive OMP Sparse
method produced good results at very high reduction factor (Figlf,i). Fig.1g shows
the error curve as a function of the number of k locations. Fig.2 shows phantom MRI
results obtained on a GE 3T scanner using two parallel transmit channels (d). With
R number of channels (R=2.0,2.8) we still achieved reasonable excitation profiles.

Discussions The foundation of this work is: A) Parallel Tx technology offers
additional redundancy, and B) Practical selective excitation target profiles do not a) Target profile for pulse | b) OMP Sparse pTx. ¢) OMP Sparse R=2.0,
require full sampling of a Nyquist-k-grid to start with. Based on both A) and B), we design, error calculation R=2.0, k-Traj. scanner image

have developed a method that under-samples the k space with pursuit of maximum
sparsity, which promises to significantly reduce the excitation pulse duration beyond
the limit of conventional parallel Tx. This method allows also a flexible tradeoff
between the excitation quality and the pulse duration. The method was validated in
Bloch simulations and phantom imaging studies.

We note that the B1 map profiles are essential for how sparse a pulse can be —

smoother profiles tend to allow greater sparsity. This method can be used to help ¢) OMP Sparse pTx. f) OMP Sparse R=2.8
determine the number and the positions of the spokes for 3D spokes-pulse design. d) B maps for 2 channels R=2.8, k-Traj. scanner image
In the current form the phase-relaxing mechanism [12] is only involved in the error Figure 2

calculation step. We expect further significant improvement of the sparsity by
possibly integrating it also into the OMP greedy steps.
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