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Introduction Parallel RF transmit (Tx) offers additional degrees of freedom (redundancy) in excitation pulse design [1,2]. One application of this 
redundancy is accelerating multidimensional selective excitation by under-sampling the excitation k space. Unlike the spatial encoding task in imaging, 
where the underlying image is unknown, in the case of excitation pulse design the target excitation profile is known a priori. This provides a Bloch 
equation-based RF pulse design with great opportunities for optimization. In principle, the target profile, B1 maps and error tolerance (TOL) determine 
where to ideally under-sample the k space with optimal sparsity. It is desirable to have a sparsifying strategy that exploits this pre-knowledge [3,4]. We 
propose a k-space sparsifying method based on a greedy-wise algorithm. Our approach is inspired by the theoretical results in sparse signal 
approximation [5,6,7] and the Compressed Sensing (CS) effort on the imaging side [8,9]. In the sense of ‘sparsity’ our approach can be seen as a 
counterpart to the multi-coil CS in RF excitation. Simulation and phantom results showed good excitation profile particularly in high reduction-factor 
cases, where the conventional non-adaptive under-sampling method is limited. 
Theory Parallel Tx pulse design is described in a matrix notation by p = Σj Diag(Sj)*ΦFT*bj where p is the target profile, bj is the rf waveform for the j-th 

Tx-coil, Sj is the B1 map of the j-th Tx-coil, ΦFT is the Fourier Transform matrix: [ϕk1, ... ,ϕkN], where ϕkj = exp(ikjx) is the Fourier base for j-th Nyquist k 

location.  The goal of parallel Tx adaptive sparse k/RF joint design is to represent the target p by using fewest k locations as possible given TOL. This 
perspective leads us to sparse approximation with redundancy [5,6,7],  which can be approached either by solving L1-regularized-LS problem [7,4] , or 
by greedy style method [5,6], where one stepwise introduces the next ‘most important’ k point. If in Fourier domain the target profile and the B1 maps 
have sparse representations, one can end up with a much smaller number of k locations than the number of k locations required by Nyquist theorem. For 
parallel Tx acceleration one needs simultaneous sparsity over all the channels [4], which makes the greedy approach a more suitable choice. 
Method Our proposed method is a modified version of the so-called Orthogonal 
Matching Pursuit (OMP) [5,6] method. (Notations: N = number of spatial pixels, Nc = 
the number of channels, Nk = the number of k locations) 

The sparsity of the k space is related to the smoothness of the B1 spatial profile. To 
avoid unnecessary spatial singularities we apply a smoothly decaying-to-zero 
extrapolation of the B1 profiles into the don’t-care region outside the imaged object. 
Calculation of a k trajectory that efficiently traverses an arbitrary set of k space 
locations is non-trivial. We currently use an approach that connects the locations in 
a suboptimal EPI-like manner. For gradient waveform design we use (i) a routine 
based on [11] or (ii) a suboptimal extended version based on [10]. 
 

Results We validated the adaptive OMP parallel Tx method using Bloch simulations 
and phantom experiments. Fig.1 shows the simulation results using 6 Tx Coils. 
Fixed under-sampling strategy delivered reasonable results at a moderate reduction 
factor (R=3.3 with 6 Ch.). With higher R the quality is limited. Adaptive OMP Sparse 
method produced good results at very high reduction factor (Fig1f,i). Fig.1g shows 
the error curve as a function of the number of k locations. Fig.2 shows phantom MRI 
results obtained on a GE 3T scanner using two parallel transmit channels (d). With 
R r number of channels (R=2.0,2.8) we still achieved reasonable excitation profiles. 
 

Discussions  The foundation of this work is: A) Parallel Tx technology offers 
additional redundancy, and B) Practical selective excitation target profiles do not 
require full sampling of a Nyquist-k-grid to start with. Based on both A) and B), we 
have developed a method that under-samples the k space with pursuit of maximum 
sparsity, which promises to significantly reduce the excitation pulse duration beyond 
the limit of conventional parallel Tx. This method allows also a flexible tradeoff 
between the excitation quality and the pulse duration. The method was validated in 
Bloch simulations and phantom imaging studies.  
We note that the B1 map profiles are essential for how sparse a pulse can be – 
smoother profiles tend to allow greater sparsity. This method can be used to help 
determine the number and the positions of the spokes for 3D spokes-pulse design. 
In the current form the phase-relaxing mechanism [12] is only involved in the error 
calculation step. We expect further significant improvement of the sparsity by 
possibly integrating it also into the OMP greedy steps. 
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Figure 1 
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Figure 2 

Step-I:    Find the next ‘best’ k location:             

 
where A is matrix composed of Nc column-wise B1 weighted Fourier harmonics: 

          
Step-II:   Add the new k location to the previously chosen k subset 
Step-III:  Use LS pulse design for the best possible profile with chosen k positions.  
              Calculate the corresponding residual:           res = Σj Sj*ΦFT*bj  - p  
Step-IV: if   |res|2 > TOL ,  � step-I) 
              else                ,  � step-V) 
Step-V:  Design the feasible k trajectory traveling through k1:Nk  
 

Step-VI: Redesign RF with the resulting k-trajectory using conventional pulse design. 
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