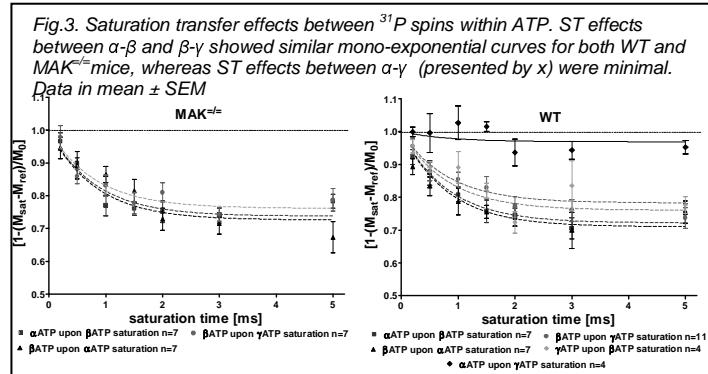
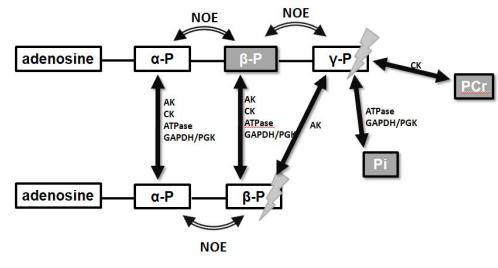

In vivo cross-relaxation in ATP in skeletal muscle measured by ^{31}P saturation transfer MRS

C. Nabuurs¹, B. Huijbregts¹, A. Veltien¹, B. Wieringa², C. Hilbers³, and A. Heerschap¹


¹Radiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands, ²Cellbiology, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands, ³Physical Chemistry, Radboud University, Nijmegen, Netherlands

Introduction Saturation Transfer (ST) is frequently applied in high resolution NMR to determine intramolecular spin-spin distances based on cross-relaxation. In contrast, *in vivo* this technique has mainly been used for the assessment of fluxes through multiple enzymatic exchange reactions involving the transfer of phosphates [1,2] (fig. 1). Saturation of the γ ATP/ β ADP signal in ^{31}P MR spectra of brain and muscle results in an effect on the β -ATP resonance, which could be due to both ATP \leftrightarrow ADP fluxes or ^{31}P - ^{31}P cross-relaxation [3,4].

Aim: to differentiate among these potential causes by applying saturation at all three ATP signals in mice with deficiencies for muscle specific cytosolic CK and AK (MAK $^{=/-}$). With this knockout it is possible to resolve individual contributions of multiple exchange reactions and cross-relaxation processes to β -ATP signal decreases in muscle. Moreover, we examined the potential contribution of ^{31}P - ^{31}P cross-relaxation processes and transferred Nuclear Overhauser effects (trNOE) of a bound ATP fraction by theoretical simulations.


Solomon equations for relaxation processes in a 2-spin system that include auto-relaxation (ρ), dipolar relaxation (σ) and chemical shift anisotropy (R_{CSA}). For free ATP a rotation correlation rate constant (τ_c) of 0.3 ns was used [5]. Potential presence of trNOE was investigated according to the equations given by Clore and Gronenborn [6]. We assumed that free ATP is in fast chemical exchange with a bound ATP fraction accounting of $\leq 5\%$. For the bound ATP τ_c varied between 35 and 300 ns [7]. Other used parameter values: the distance between two neighbouring ^{31}P spins $r = 3 \times 10^{-10}$ [8].

Discussion Our results demonstrate that the highly reduced CK (8%) and AK (1-2%) [9] activities in skeletal muscles of MAK $^{=/-}$ mice do not affect the decrease in β -ATP signal. Thus neither of these 2 enzyme activities are significantly contributing [5]. Major adaptations in glycolytic and mitochondrial ATP production are excluded since Pi \rightarrow ATP fluxes in MAK and wt were equal. Also the reverse flux (ADP+Pi \rightarrow ATP) through glycolytic and mitochondrial ATP synthesis is not contributing significantly in β -ATP signal intensity reductions as it would be too slow. Thus our experiments show that all proposed chemical exchange reactions are not likely to cause a β -ATP signal decrease. Moreover, the strikingly similar ST effects between neighboring ATP phosphoryls and absence of such an effect between γ - α ATP suggest that cross-relaxation must be the predominant cause for the β -ATP reduction in muscle. However, the simulations showed that for free ATP in solution cross-relaxation processes between ^{31}P spin systems are too slow to explain these MT effects between neighboring ATP phosphor spins. On the other hand, our simulations show that the saturated magnetization can be transferred from γ ATP to β ATP in free ATP via an enzyme complex formation in fast chemical exchange. The measured 31P spin interaction thus may be used to asses cellular ATP interactions.

References [1] Brindle KM. *Prog NMR spectroscopy* 1988; [2] Ugurbil, JMR 198; [3] LeRumeur et al. *NMR in Biomed* 1997; [4] Du et al, *PROG ISMRM* 2008; [5] Landy et al. *Eur J Biochem* 1992; [6] Jarori et al. *Eur J Biochem* 1995; [7] Clore & Gronenborn, *JMR* 1982; [8] Potzelski et al. 200; [9] Janssen *J Biol Chem* 2003.

Fig. 1. Upon saturation of the γ -ATP, phosphocreatine (PCr) signals decrease due to creatine kinase (CK) activity, whereas Pi signal decreases are induced by glycolytic and mitochondrial ATP production. Decreases in β -ATP signal have been ascribed to β -ATP \rightarrow β -ADP chemical exchange catalyzed by CK, adenylate kinase (AK), glycolytic enzymes and mitochondrial ATPase activity (due to cosaturation of γ -ATP/ β -ADP) or ^{31}P - ^{31}P cross-relaxation [1-3].

Materials and Methods

^{31}P ST measurements on hind limb of MAK $^{=/-}$ and wild type mice were performed at 7T by selective saturation at the γ -ATP/ β -ADP resonance ($t_{sat}^{sat} = 0.2-5$ s,

TR=6.7 s, nsa=64). Signals were fitted with AMARES, corrected for off-resonance saturation and normalized to signals without irradiation. Decreases in PCr, Pi and β -ATP signals were fitted to a mono-exponential function to determine the pseudo-first-order unidirectional rate constants (k) of the chemical exchange reactions and fluxes of PCr \rightarrow ATP, Pi \rightarrow ATP and ATP \rightarrow ADP, respectively [1,2]. Potential cross-relaxation processes were examined by comparing MT effects between β - α , β - γ and γ - α ATP signals. Simulations were performed in MATLAB based on the

Results Upon γ -ATP saturation, the PCr \rightarrow ATP flux in skeletal muscle of MAK $^{=/-}$ (0.84 ± 0.24 mM/s) was only 8% as compared to that of wt (10.2 ± 1.5 mM/s), whereas decreases in β -ATP were equal both groups (fig. 2), as well as Pi \rightarrow ATP fluxes (MAK $^{=/-}$ 0.47 ± 0.18 mM/s, wt 0.64 ± 0.13 mM/s). ST effects between α - β and β - γ showed similar mono-exponential curves with σ ranging from 0.28 to 0.34 and SD of $<0.04\text{s}^{-1}$ for both groups. In contrast, ST effects between α - γ were hardly present (Fig. 3 only measured in WT). The calculated constants for ρ , σ and R_{CSA} (table 1), show that cross-relaxation in free ATP is negligible, but binding of ATP to a large immobile molecule can result in large negative NOE in steady state saturation ($\sigma / (\rho + R_{CSA})$).

Table 1: Calculated constants for auto-relaxation, cross-relaxation and CSA relaxation for ATP in a free and bound state and their corresponding steady state MT effect ($\sigma / (\rho + R_{CSA})$ in a steady state saturation experiment.

	τ_c	ρ	σ	R_{CSA}	$\sigma / (\rho + R_{CSA})$
Free ATP	0.3 ns	0.0056 s $^{-1}$	0.0025 s $^{-1}$	0.72 s $^{-1}$	0.0035
Bound ATP	35 ns	0.074 s $^{-1}$	-0.073 s $^{-1}$	0.12 s $^{-1}$	-0.37
Bound ATP	300 ns	0.632 s $^{-1}$	-0.632 s $^{-1}$	0.014 s $^{-1}$	-0.98