

Improved ^{31}P Saturation Transfer Approach for Imaging Cerebral ATP Metabolic Rates *In Vivo*

X-H. Zhu¹, Q. Xiong^{1,2}, Y. Zhang¹, and W. Chen^{1,2}

¹CMRR, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States, ²Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States

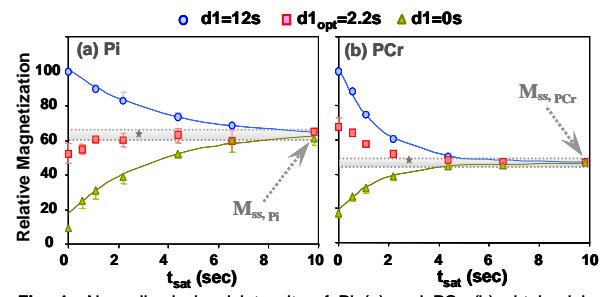
INTRODUCTION The cerebral ATP metabolism plays a central role in neuroenergetics for supporting brain energy and function and it is regulated by the three-site chemically exchange system of $\text{Pi} \leftrightarrow \text{ATP} \leftrightarrow \text{PCr}$ for maintaining a stable ATP content in the brain. Recent progress has demonstrated that the use of *in vivo* ^{31}P MRS combined with magnetization saturation transfer (ST) at high field is able to reliably measure the cerebral metabolic rates of ATP involving ATPase reaction of $\text{Pi} \rightarrow \text{ATP}$ (CMR_{ATP}) and CK reaction of $\text{ATP} \leftrightarrow \text{PCr}$ (CMR_{CK})^{1,2}. Moreover, it was found that the measured CMR_{ATP} reflects the net rate of oxidative phosphorylation of ADP for generating ATP in brain mitochondria and it is also sensitive to the brain activity state^{3,4}. These findings indicate the great promise of *in vivo* ^{31}P ST approach for directly assessing brain ATP energy. However, the conventional ST measurement requires a fully relaxed condition before applying frequency-selected γ -ATP saturation in order to achieve accurate quantification of rate constants and fluxes. This limitation results in a lengthy repetition time (TR) and a low detection efficiency; and it poses a major hurdle for 3D CSI application in which many scans are needed. To overcome this limitation, we have recently proposed a novel strategy to improve the efficacy of steady-state ST measurement by employing a numerically optimized pre-saturation delay ($d1_{\text{opt}}$) for achieving the same magnetization transfer effect and the steady-state magnetizations of $M_{\text{ss},\text{Pi}}$ for $\text{Pi} \leftrightarrow \text{ATP}$ reaction and $M_{\text{ss},\text{PCr}}$ for $\text{ATP} \leftrightarrow \text{PCr}$ with much short saturation time (t_{sat}) and TR compared to the conventional ST measurements. The numerical optimization was based on solving the Bloch equations using known longitudinal relaxation times, estimated reaction rate constant range and a 90° excitation flip angle. The concept underlying this strategy is to seek $d1_{\text{opt}}$ for controlling the Pi and PCr magnetization recoveries to the point being near the steady-state magnetizations (i.e., $M_{\text{ss},\text{Pi}}$ and $M_{\text{ss},\text{PCr}}$); then, the subsequent γ -ATP saturation pulse train will further force the magnetizations to approaching the ideal $M_{\text{ss},\text{Pi}}$ and $M_{\text{ss},\text{PCr}}$ values which can be applied to calculate the forward rate constants (k_f) and fluxes according to the following relationships^{1,2}:

$$k_f,\text{ATP} = (M_{\text{c},\text{Pi}} - M_{\text{ss},\text{Pi}}) / (T_{1,\text{Pi}} \times M_{\text{ss},\text{Pi}}) \text{ and } \text{CMR}_{\text{ATP}} = k_f,\text{ATP} \times [\text{Pi}];$$

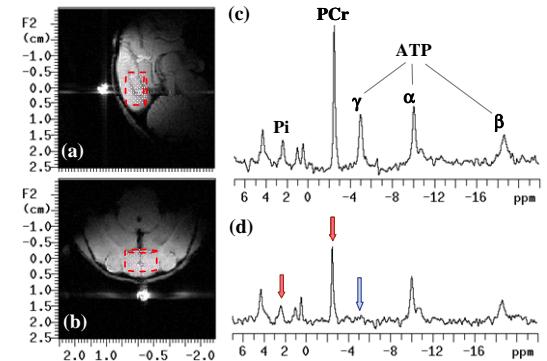
and

$$k_f,\text{CK} = (M_{\text{c},\text{PCr}} - M_{\text{ss},\text{PCr}}) / (T_{1,\text{PCr}} \times M_{\text{ss},\text{PCr}}) \text{ and } \text{CMR}_{\text{CK}} = k_f,\text{CK} \times [\text{PCr}],$$

where T_1 presents the intrinsic longitudinal relaxation time which can be treated as constant; M_c is the magnetization acquired under fully relaxed condition in the absence of γ -ATP saturation. This new ST strategy measures $M_{\text{ss},\text{Pi}}$ and $M_{\text{ss},\text{PCr}}$ with a much higher efficacy, and it has been tested in the swine heart for quantifying the myocardium CK flux. In the present study, we implemented this unique ST strategy with 3D ^{31}P CSI for imaging both CMR_{ATP} and CMR_{CK} in the cat brain at 9.4T.


METHODS All ^1H images and ^{31}P spectra were acquired with a home-built ^1H - ^{31}P dual RF surface coil probe on a 9.4T/30cm bore Magnex magnet equipped with Varian INOVA consoles. Female adolescent cats under gaseous anesthesia (0.9–1.2 % isoflurane in a mixture of 70% nitrous oxide and 30% oxygen) and artificial ventilation were used for this study. The BISTRO pulse train was applied for frequency-selective saturation of γ -ATP with varied saturation time (t_{sat} up to 9.8s) for performing progressive ST measurements and a fixed t_{sat} for performing steady-state ST measurements³. An adiabatic half passage pulse was used for spin excitation and readout of *in vivo* ^{31}P MT spectra. The 3D ^{31}P CSI based on the 3D Fourier series window approach⁴ was combined with the ST method for imaging the ATP metabolic rates. The acquisition parameters are: total scan number=112×2; FOV=4×4×2.5 cm³; 7×7×5 phase encodes; spectra width =5000Hz; TR = 5s; and total sampling time of 18.6 minutes. The ^{31}P spectra were processed with LB=10 Hz before Fourier transformation and analyzed using AMARES time domain spectra fitting algorithm in the JMRUI software package. All results were presented by mean±SD.

RESULTS Figure 1 summarizes the comparison results for measuring the steady-state Pi and PCr using the progressive saturation transfer method (with varied saturation time t_{sat}) where three distinct strategies were applied. Strategy I: conventional approach with a long pre-saturation delay ($d1 = 12$ s) for ensuring fully relaxed magnetization prior γ -ATP saturation; Strategy II: partial relaxed condition with $\text{TR} \ll 5T_1$ and without pre-saturation delay ($d1=0$); Strategy III: partial relaxed condition with an optimal $d1$ (i.e., $d1_{\text{opt}}$). The dependence of the Pi and PCr magnetizations upon t_{sat} is substantially different among the different strategies. For the first two strategies, the magnetizations change according to a mono-exponential function with a slow decay rate, thus, they require a much longer t_{sat} for reaching the steady-state magnetizations, resulting in a lengthy TR. For instance, a t_{sat} of ~10s was needed to reach $M_{\text{ss},\text{Pi}}$ thus TR = 22 s for Strategy I and TR = 10s for Strategy II (Fig. 1a). In contrast, Strategy III uses the $d1_{\text{opt}}$ value (2.2 s) allowing the Pi magnetization recovery to the level close to $M_{\text{ss},\text{Pi}}$, and only a short t_{sat} was required to reach $M_{\text{ss},\text{Pi}}$ (t_{sat} : 2-3 s), thus, the same $M_{\text{ss},\text{Pi}}$ value could be obtained with a much short TR (TR: ~5s). These optimal parameters of $d1_{\text{opt}}$ (2.2s), t_{sat} (2.8s) and TR ($d1_{\text{opt}}+t_{\text{sat}} \approx 5$ s) were applied to conduct steady-state ST measurements and the similar $M_{\text{ss},\text{Pi}}$ and $M_{\text{ss},\text{PCr}}$ were obtained (see * symbols in Figs. 1a and 1b). Moreover, the same parameters were used to acquire *in vivo* 3D ^{31}P ST CSI data from the cat brain. Figure 2 demonstrates the results of ^{31}P ST spectra (Figs. 2c and 2d) taken from one voxel located inside the cat visual cortex based on the brain anatomical images (Figs. 2a and 2b). It indicates that similar $M_{\text{ss},\text{Pi}}$ and $M_{\text{ss},\text{PCr}}$ have been reached with a short TR=5s.


DISCUSSION AND CONCLUSION In this study, we examined the newly developed ST strategy combined with 3D ^{31}P CSI for measuring and quantifying CMR_{ATP} and CMR_{CK} in the cat brain at 9.4T. The main merit of this improved *in vivo* approach is to obtain the steady-state magnetizations for the chemically exchanged phosphate metabolites of Pi and PCr with substantially shortened sampling time as well as RF saturation time. It provides several advantages: i) shortening TR substantially would allow 3D-CSI acquisition within a relatively short period (e.g., Fig. 2); ii) reducing the RF saturation time or RF duty cycling rate, which is critical for minimizing the SAR concern particularly for human application; iii) increasing the sensitivity for flux measurement because short TR would allow more signal averaging within the same sampling period; and iv) significantly simplify and improve the quantification of the ATP reaction rate constants and fluxes with short TR. These advantages have been clearly demonstrated in the present *in vivo* study. The overall results indicate that the combination of the improved ST strategy and 3D *in vivo* ^{31}P CSI holds great promise for noninvasively imaging CMR_{ATP} and CMR_{CK} , which are vital for understanding the neuroenergetics and ATP energy associated with brain function and dysfunction.

References: 1. Lei et al. PNAS, 2003;100:14409. 2. Du et al. MRM, 2007;57:103. 3. Du et al. PNAS, 2008;105:6409. 4. Zhu et al. Proceeding ISMRM 2008; p 408.

Acknowledgements: This work is supported in part by NIH grants: NS41262, EB00513, P41 RR08079 and P30NS057091; the Keck foundation.

Fig. 1 Normalized signal intensity of Pi (a) and PCr (b) obtained in progressive ST experiments using varied pre-saturation delay ($d1$) of 12, 2.2 and 0 sec, respectively, from 1% isoflurane anesthetized cat brain ($n=5$) at 9.4T. The error bars represent the standard deviation and the gray zones represent the $\pm 5\%$ error of the steady-state signal (M_{ss}) of Pi and PCr . The * symbol shows typical Pi and PCr signals obtained at $d1=2.2\text{s}$ and $t_{\text{sat}}=2.8\text{s}$ (i.e. TR=5s) using the steady-state ST method from one representative cat brain, which are within the $M_{\text{ss}} \pm 5\%$ range.

Fig. 2 Steady-state 3D-CSI ^{31}P MT measurements of cat brain at 9.4T: Anatomic images (a-b) and ^{31}P MT spectra with (d) and without (c) γ -ATP saturation obtained from a central voxel (outlined in a-b) of a representative cat brain. The 3D ^{31}P MT imaging data were acquired with $d1=2.2\text{s}$, $t_{\text{sat}}=2.8\text{s}$ (i.e. TR=5s) and total acquisition time is 18.6 mins.