

## In Vivo Human Coronary Magnetic Resonance Angiography at 7 Tesla

S. G. van Elderen<sup>1</sup>, A. G. Webb<sup>1</sup>, M. J. Versluis<sup>1</sup>, J. J. Westenberg<sup>1</sup>, J. Doornbos<sup>1</sup>, N. B. Smith<sup>1</sup>, A. de Roos<sup>1</sup>, and M. Stuber<sup>2</sup>

<sup>1</sup>Radiology, Leiden University Medical Centre, Leiden, Netherlands, <sup>2</sup>Radiology, Johns Hopkins University Medical School, Baltimore, United States

**Introduction.** Cardiac MRI at high fields faces many challenges including the lack of commercially available body RF coils, increased sample-induced B1 inhomogeneity, increased magnetic susceptibility effects which make imaging with balanced sequences difficult, and SAR limitations. However, if these can be at least partially overcome, then the higher signal-to-noise is advantageous both for imaging and localized spectroscopy. Here we investigate the feasibility of acquiring coronary magnetic resonance angiography (CMRA) scans, a promising technique for the non-invasive visualization of the coronary anatomy (1), in volunteers at 7 tesla (T) on a time-scale acceptable for clinical studies.

**Methods.** Eleven healthy volunteers (8 men, 3 women, mean age  $33.6 \pm 8.8$  years) were imaged in a 7T MR system (Philips Healthcare, Best, NL). Since no body coil is available, a multi-segmented 13-cm diameter anterior surface coil was designed and constructed and used in transmit/receive mode. A commercial vector ECG (VECG) system was used for R-wave triggering. Volume selective RF power optimization and shimming were applied for each scan. A segmented k-space gradient echo sequence was used for scout scanning. Multi-slice cine scans were used for coronary artery localization and for the visual identification of the time period ( $T_d$ ) of minimal coronary motion. Scan plane localization parallel to the right coronary artery (RCA) was facilitated using a three-point planscan tool. Double-oblique free-breathing 3D coronary MRA (segmented k-space gradient-echo imaging,  $TR=4ms$ ,  $TE=1.5ms$ , RF excitation angle=15°, field-of-view=420x269x30mm<sup>3</sup>, scan matrix=512x488, 30 slices, slice thickness=2mm, acquisition window~100ms, scan time~4min) was performed using prospective navigator gating with the 2D selective navigator localized at the left heart-lung interface. Image data were collected in mid-diastole at the predetermined  $T_d$ . An adiabatic spectrally selective inversion recovery prepulse ( $TI=200ms$ ) was used for fat suppression and enhanced contrast between the coronary blood-pool and epicardial fat. Coronary MRAs were reformatted and measurements were performed using the "Soapbubble" software tool (2).

**Results.** Right coronary MRAs were successfully obtained in all eleven healthy adult human subjects. The mean duration of the 3D coronary MRA scan was  $240 \pm 32$  seconds. The average measured contiguous length of the RCA was  $6.8 \pm 3.6$  cm. The average measured diameter of the first 4 cm of the RCA was  $3.0 \pm 0.6$  mm. The signal-to-noise of the blood-pool was measured to be  $18.5 \pm 13.4$ , with an average vessel sharpness of  $43 \pm 10\%$ .

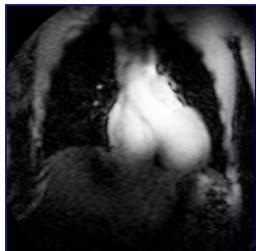



Figure 1

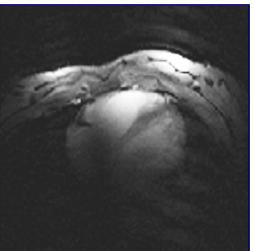



Figure 2



Figure 3



Figure 4

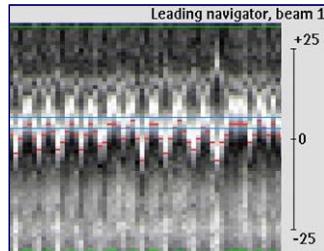



Figure 5

Figures 1 and 2 (left) show scout images in the coronal and axial plane, respectively, illustrating that the RF penetration of the 13 cm diameter surface coil is sufficient for RCA imaging. Figure 3 (centre) shows a long contiguous segment of the RCA (arrow) with high contrast between the blood-pool and the epicardial fat. One potential concern is that, at the higher field strength, the magneto-hydrodynamic effect is amplified with an artificial augmentation of the T-wave of the ECG (upper Figure 4 shows an ECG outside the MR scanner, lowest Figure 4 an ECG inside the 7T MRI). Nevertheless, the VECG algorithm allowed reliable R-wave triggering. In Figure 5 (right) the navigator signal from the heart-lung interface received by the surface coil can be seen.

**Discussion.** This work represents the first report of human coronary MRA at 7T using appropriate adaptations of the scanning protocol at lower fields and the use of a custom-built transmit-receive surface coil. Long contiguous segments of the RCA with reasonable contrast and acceptable scanning times can be obtained. Future work will focus on optimizing contrast enhancement between the blood-pool and the myocardium within the SAR and B1 homogeneity constraints. In order to improve volumetric coverage, the development of larger surface coils or coil arrays will be required.

### References.

1. Stuber M et al., J of Magnetic Resonance Imaging 2007, 26, 219-234
2. Etienne A et al., Magnetic Resonance in Medicine 2002, 48, 658-666