Apparent Diffusion Coefficient Value for Differentiating Pathology in Cervical Cancer at 3 Tesla

G. Lin¹, K. K. Ng¹, Y. Y. Wai¹, J. J. Wang¹, C. H. Lai², Y. T. Huang¹, K. C. Ho³, and T. C. Yen³

¹Department of Radiology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan, ²Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan, ³Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taipei, Taiwan

BACKGROUND

We design this study to investigate the feasibility of using apparent diffusion coefficient (ADC) value generated from 3T MRI diffusion-weighted image (DWI) for differentiating pathology categories of cervical cancer.

MATERIALS AND METHODS

A total of 126 patients with biopsy proven cervical cancers were enrolled, including 94 patients of squamous cell carcinoma, 22 of adenocarcinoma, 7 of adenosquamous carcinoma, 3 of small cell carcinoma. Diffusion weighted echo-planar sequence was performed in 3T MRI (Magnetom Trio-Tim, Siemens) with body coil. The imaging parameters were TR/TE = 3390 ms/79 ms, field of view 350 mm x 320 mm, slice thickness 5 mm, acceleration factor 2. The diffusion weighting gradients were applied in three orthogonal directions using b factors of 0 and 1000 sec/mm² respectively. The DWI and T2-weighted images were fused for detailed anatomical localization. Mean ADC values of main tumors were measured using a manually placed irregular region of interest (ROI) in axial plane. Mean ADC values of different pathology categories were compared with ANOVA test, and a P value ≤ 0.05 was determined to be statistically significant.

RESULTS

Diffusion imaging in the cervical cancer is feasible with satisfactory image qualities and without major artifacts noticed. Fig. 1 showed the ADC image (in color) fused with the T2W image (in grayscale). Mean ADC value of adenocarcinoma $(0.96 \pm 0.21 \times 10^{-3} \text{ mm}^2/\text{s})$ was higher than that of squamous cell carcinoma $(0.84 \pm 0.11 \times 10^{-3} \text{ mm}^2/\text{s})$ mm²/s), adenosquamous carcinoma ($0.79 \pm 0.10 \times 10^{-3} \text{ mm}^2$ /s), or small cell carcinoma ($0.53 \pm 0.10 \times 10^{-3} \text{ mm}^2$ /s). Significant difference (p<0.001) was noted between groups, as shown in Fig 2.

CONCLUSION

ADC value from 3.0T MRI-DWI is promising in differentiating pathology types of cervical cancer.

Fig 2.

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008)