Fluorine-19 MRI of the lung during high frequency oscillatory ventilation (HFOV): visualization of the wash-Out of C4F8

U. Wolf¹, A. Scholz², M. David², R. Koebrich³, M. Terekhov¹, and W. G. Schreiber¹

¹Section of Medical Physics, Radiology, Johannes Gutenberg University, Mainz, Germany, ²Anesthesiology, Johannes Gutenberg University, Mainz, Germany, ³Maquet, Germany

Purpose:

During the last two decades fluorine-19 MRI of the lung has emerged as a robust research tool to visualize physiologic phenomena such as wash-in, intrapulmonary distribution and wash-out of inhaled fluorinated gases in the context of conventional ventilation in anesthetized animals [1-4] As conventional ventilation bears the risk of lung injury in the ARDS patient, high frequency oscillatory ventilation looked upon as a protective ventilation strategy is of considerable interest in the intensive care unit. To date, the underlying processes of HFOV are poorly understood. The aim of this study was twofold: (i) to find out if MRI of C_4F_8 during HFOV is feasible despite the 5-10 Hz motion, (ii) to measure the wash-out of the contrast gas during HFOV.

Materials and Methods

All experiments were performed on a 1.5 T MRI scanner (Siemens Magnetom Vision Experimental) using FLASH pulse sequences (TR/TE/FA=11.19ms/3.68ms/40°). 5 healthy pigs (24-26kg) were first mechanically ventilated using gas mixtures of 80% fluorinated gas and 20% O_2 . After equilibration of the lung with the inhaled gas mixture, a series of 50 transversal images (scan time: 5s) during HFOV was obtained. The signal decay time constant was estimated by a nonlinear fit procedure. Each animal was tested twice at both the frequency of 5 and 10Hz, respectively.

Results

Despite a drop in SNR after the onset of HFOV for each pig the four experiments could be evaluated by the fitting procedure. A mean wash-out time (tau) at 5Hz of 50.9 ± 17.6 s and a mean tau of 123.7 ± 30.9 s, respectively at 10Hz were found for regions of interest (ROI) including the whole lung. This is in agreement with the clinical findings that wash-out of respiratory gases is significantly prolonged for increased HFOV frequencies.

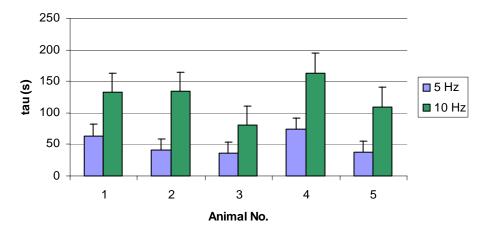


Fig 1: Mean wash-out time constants tau for each of the five pigs investigated at 5Hz and 10Hz, respectively

Conclusion

For the first time, fluorine-19 was successfully applied during HFOV. As we provided evidence that inhaled gases can be visualized during HFOV, this offers the possibility to benefit from this MRI technology to obtain a better understanding of the effective mechanisms of HFOV in the future. Despite the difference between the physical properties of C_4F_8 and of respiratory gases, the MRI signal decay dependence on HFOV frequency shows the expected trend. Therefore, ¹⁹F-MRI of fluorinated gases appears to be an interesting imaging modality to assess transport mechanisms during artificial ventilation, e.g. HFOV.

Acknowledgements

The research was supported by grants of the German Research Foundation (DFG FOR 474/Schr 687/2, and Schr 687/5), MAIFOR and Forschungsfonds, Johannes Gutenberg University, Mainz, Germany. We thank Viasys for the the generous loan of HFOV equipment.

References

- 1. Kuethe DO et al. J Appl Physiol 2000;88:2279-2286.
- 2. Schreiber WG et al. Magn Reson Med 2001;45:605-613
- 3. Ruiz-Cabello J et al, Respir Physiol Neur 2005;148:43-56.
- 4. Wolf U et al. Magn Reson Med 2006;55:948-951.