Dynamic Contrast Enhanced MRI of the Breast: Kinetic curve analysis to determine the optimal temporal resolution

R. H-D. El-Khouli¹, M. JACOBS², J. Wei², P. B. Barker², K. J. Macura³, and D. A. Bluemke²

¹Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States, ²Radiology, Johns Hopkins University. School of Medicine, Baltimore, Maryland, United States, ³Radiology, Johns Hopkins University. School of Medicine, Baltimore, Maryland, United States

Purpose: MRI pulse sequences require a trade-off between spatial and temporal resolution for breast imaging. Because of this, clinical protocols frequently use a combinatio of dynamic imaging along with high spatial resolution sequences. However, the minimal temporal resolution to reliably reproduce the time-intensity curves remains poorl defined. The purpose of this study was to evaluate the required temporal resolution for dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of the breast fc optimal characterization of breast lesions as benign versus malignant[1, 2].

Materials and Methods: Forty eight patients were evaluated using a 1.5 T system with a bilateral dedicated breast coil. All patients had single masses except one wit multicentric DCIS. MRI examination was performed that included DCE consisting of one pre- and at least 14 post-contrast series with 15 second temporal resolution per acquisition. Post-processing of the DCE exam was performed with Computer Aided Detection (CAD) software using a four compartment modified Tofts model[3]. The 15 secon quantitative data from the kinetic curve was extracted and temporal resolution was systematically reduced to 30, 45 and 60 second temporal resolution per acquisition. Then, was in and washout slopes and washout percentage changes were calculated and the shapes of each curve (progressive, plateau and washout) were assessed separately at each temporar resolution. Logistic regression and probability cutoff were used to determine associations and significance. ROC analysis was performed to assess the diagnostic accuracy of eac parameter at each temporal resolution.

Results: Thirty eight patients (79%) had malignant lesions and 10 patients had benign lesions (21%). For wash-in slope, only the 45 second dataset predicted benign versu malignant diagnosis (p = 0.049). For the washout slopes, 15 sec (p=0.006), the 30 second (p=0.006), 45 sec (p=0.012) and 60 sec (p=0.011) datasets predicted benign vs. malignan and 15 sec dataset had the greatest area under ROC curve (0.791). For the washout percentage, the 15 second (p=0.007), 45 sec (p=0.011) and 60 sec datasets (p=0.016) showe significant association with malignant versus benign diagnosis; again the 15 sec dataset showed the highest area under ROC curve (0.7813). The area under ROC was maximize by combining the wash-in and wash-out slopes (ROC = 0.866 for 15 second temporal resolution and 0.868 for 60 seconds). The shape classification of the kinetic curve wa affected by the choice of temporal resolution, with the 45 sec curves showing better correlation with biopsy results (odds ratio=7.03, p=0.002).

Temporal Resolution in seconds per acquisition	Odds Ratio	P value	Confidence Interval	Probability Cut off	Corresponding sensitivity and specificity	Area under ROC	300 er ce 200 ag en 150 ha
			Wash in Slope				nc 100 e
15 sec	2.12	0.052	0.99-4.55	0.75	70%	0.73	50
30 sec	2.08	0.073	0.94-4.596	0.75	70%	0.69	0 15 30 45 60 75 90 105
45 sec	1.88	0.049	1.0 -3.45	0.8	55%	0.57	300
60 sec	2.07	0.072	0.94-4.6	0.75	70%	0.69	Pe 250
Wash out Slope							en 200
15 sec	3.8e-06	0.006	5.43e-10 - 0.03	0.75	80%	0.7912	ge en ha 150
30 sec	7.0e-06	0.006	1.49e-09 - 0.03	0.75	80%	0.7887	nc e 100
45 sec	0.000046	0.012	1.87e-08 - 0.1	0.75	80%	0.7641	en
60 sec	0.000065	0.011	3.95e-08 - 0.1	0.75	75%	0.7543	
		Wa	shout percent change				0 45 9
15 sec	1.047	0.007	1.013 - 1.08	0.75	80%	0.7813	300
30 sec	1.01	0.194	0.99 - 1.02	0.75	80%	0.7518	P 250 er
45 sec	1.043	0.011	1.0098 - 1.077	0.75	80%	0.7715	nt 200
60 sec	1.035	0.016	1.0065 - 1.064	0.75	75%	0.7424	e 150 ha
			Type of the curve				nc 100
15 sec	4.8	0.008	1.51-15.3	. 85	75%	0.7711	50
30 sec	4.96	0.006	1.6-15.6	. 85	72%	0.7855	0 30 60 90
45 sec	7.02	0.002	2.0-4.7	0.88	75%	0.8197	300 1
60 sec	4.33	0.014	1.3-13.9	0.85	70%	0.7526	
			1.3-13.9				Pe 250 rc en 200

Figure; Kinetic curves drawn for one patient acquired at temporal resolution (TR) of 15 sec, and then systematically reduced to TR 30. 45 and 60 sec per acquisition. Note that the shape of the curve changes with changing temporal resolution. For example, at TR = 60 sec, thewashout portion of the curve is progressive rather than plateau. Biopsy proved the tumor to be in-situ and infiltrating ductal carcinoma

TR 15

TR 30

TR 45

TR 60

Table: The relationship between kinetic parameters and the final diagnosis of benign vs. malignant. The probability cutoff is shown as well as the corresponding sensitivity, specificity and area under the ROC curve for each parameter.

Conclusion: DCE data with at least 45 second temporal resolution appears to be necessary to maximize the agreement between the DCE data and benign versus malignai diagnosis.

References:

- 1. Kuhl, C.K., H.H. Schild, and N. Morakkabati, Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology, 2005. 236(3): p. 789-800.
- 2. Wood, C., Computer Aided Detection (CAD) for breast MRI. Technol Cancer Res Treat, 2005. 4(1): p. 49-53.
- 3. Tofts, P.S., B. Berkowitz, and M.D. Schnall, *Quantitative analysis of dynamic Gd-DTPA enhancement in breast tumors using a permeability model.* Magn Reson Med, 1995. **33**(4): p. 564-8.