NAVIGATOR-TRIGGERED PROSPECTIVE ACQUISITION CORRECTION (PACE) TECHNIQUE VS. CONVENTIONAL RESPIRATORY-TRIGGERED TECHNIQUE FOR FREE-BREATHING 3D MRCP: PROSPECTIVE COMPARATIVE STUDY USING HEALTHY VOLUNTEERS

S. Morita¹, E. Ueno¹, K. Suzuki¹, H. Machida¹, M. Fujimura¹, S. Kojima¹, M. Hirata¹, T. Ohnishi², and C. Imura² ¹Department of Radiology, Tokyo Women's Medical University Medical Center East, Tokyo, Japan, ²Siemens-Asahi Medical Technologies, Tokyo, Japan

INTRODUCTION: Navigator-triggered prospective acquisition correction (PACE) technique is used for threedimensional (3D) magnetic resonance cholangiopancreatography (MRCP), with the expectation of reducing motion artifacts (1-4). However, there is no prospective comparative report proving its superiority to the conventional respiratory-triggered (RESP) technique for this sequence. Therefore, we prospectively compared PACE and RESP techniques for free-breathing 3D MRCP using healthy volunteers.

<u>MATERIALS AND METHODS</u>: Free-breathing 3D turbo spin-echo MRCP using both PACE and RESP techniques were prospectively performed on 25 healthy volunteers. Image acquisition time and quantitative analyses of a signal-to-noise ratio, contrast-to-noise ratio, and the contour sharpness index of each segment of the pancreaticobiliary tree were compared using the paired t-test. Qualitative analyses on a five-point scale (1, excellent; 5, poor) scored by two independent radiologists were compared using the Wilcoxon signed-rank test.

<u>RESULTS</u>: The subjective image quality and contour sharpness index of each segment of the PACE technique were found to be significantly better than for RESP (Table 1 and 2). No significant difference was observed with regard to signal-to-noise and contrast-to-noise ratios except for the pancreatic duct (Table 1). No significant difference in acquisition times between PACE and RESP techniques was observed (Table 1).

Table 1				
Quantitative analysis of free-breathing 3D turbo spin-echo				
MRCP using PACE and RESP techniques [*]				
	PACE	RESP	Р	
Acquisition time (min)	4.2 ± 1.1	4.0 ± 1.1	0.33	
Signal-to-noise ratio				
Extra hepatic duct	90.0 ± 44.3	82.0 ± 40.3	0.39	
Gallbladder	82.5 ± 37.7	91.3 ± 46.4	0.12	
Pancreatic duct	22.8 ± 10.1	19.5 ± 9.4	< 0.05	
Contrast-to-noise ratio				
Extra hepatic duct	86.9 ± 44.0	78.6 ± 39.8	0.37	
Gallbladder	79.4 ± 37.4	87.9 ± 46.0	0.13	
Pancreatic duct	18.9 ± 10.0	15.4 ± 8.7	< 0.05	
Contour sharpness index				
Left hepatic duct	88.6 ± 0.5	87.5 ± 1.3	< 0.05	
Pancreatic duct	86.9 ± 1.1	84.4 ± 2.9	< 0.05	
*Values are mean ± standard deviation. PACE =				
prospective acquisition correction, RESP = respiratory-				
triggered.		1	•	

<u>CONCLUSION</u>: We confirmed the superiority of the image quality of the PACE technique compared to conventional RESP technique for free-breathing 3D MRCP.

<u>REFERENCES</u>: (1) Asbach P. J Magn Reson Imaging 2006; 24: 1095-1100. (2) Zech CJ. J Magn Reson Imaging 2004; 20: 443-450. (3) Asbach P. Magn Reson Imaging 2005; 23: 939-945. (4) Klessen C. J Magn Reson Imaging 2005; 21: 576-582.

Table 2					
Qualitative analysis of free-breathing 3D turbo spin-echo					
MRCP using PACE and RESP techniques [*]					
	PACE	RESP	Р		
Overall image quality	$1.8 \pm 0.7 (0.39)$	$2.7 \pm 1.0 (0.29)$	< 0.05		
Extra hepatic duct	$1.8 \pm 0.7 (0.39)$	$2.7 \pm 1.0 (0.29)$	< 0.05		
Intra hepatic duct	$1.8 \pm 0.7 (0.39)$	$2.8 \pm 1.1 (0.36)$	< 0.05		
Cystic duct	$2.2 \pm 1.0 \ (0.30)$	$3.1 \pm 1.2 (0.19)$	< 0.05		
Pancreatic duct	$2.1 \pm 0.8 (0.34)$	$3.1 \pm 1.1 (0.22)$	< 0.05		
Frequency of artifacts	$1.1 \pm 0.3 (0.63)$	$1.7 \pm 0.9 (0.24)$	< 0.05		
Values are mean \pm standard deviation on a scale of 1-5 (1,					
excellent; 5, poor). In parentheses are the (kappa) values					
between two reviewers. PACE = prospective acquisition					
correction, RESP = respiratory-triggered.					

Figure 1. Examples of MIP images of free-breathing 3D MRCP. The image quality of the RESP technique (a) is slightly worse than that of the PACE technique (b) for a healthy 37-year-old male volunteer.

