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Introduction 
     Knowledge of mean axon diameter (MAD) would provide valuable insight into white matter (WM) architecture and pathology. Q-space imaging1 
(QSI) offers potential for indirect assessment of white matter (WM) as the Fourier transform of the QSI signal decay contains axon structure informa-
tion2,3. This information can, instead, be obtained from the echo attenuation. Although WM is too heterogenous to observe diffraction patterns in q-
space3, at low q-values (q = (2π)-1γGδ (G and δ are the diffusion gradient amplitude and pulse length, respectively), when q−1 << MAD, the signal 
decay is given by E(q)=exp(−2π2q2Z2) (Eq.1). In this regime, pore size can be estimated by Z (the root mean squared (RMS) displacement of diffus-
ing molecules during a diffusion time Δ)4,5. The use of only low q-values obviates the need for high gradient amplitudes, a drawback with QSI6. 
However, E(q) contains signal from extra- and intra-cellular spaces (ECS and ICS). In this work, we use a two-compartment version of Eq.1 to ac-
count for ECS and ICS: E(q)= fE·exp(−2π2q2ZE

2) + fI·exp(−2π2q2ZI
2)  (Eq. 2), where fE and fI are the relaxation-weighted ECS and ICS volume frac-

tions and ZE and ZI are the RMS displacement of diffusing molecules in the ECS and ICS. MAD of WM tracts in mouse spinal cords (SC) was esti-
mated from E(q) at low q-values with both Z (Eq.1) and ZI (Eq.2) for comparison 
Methods 
     Five SC sections (C6-C7) were dissected from perfusion-fixated 8-10 month-old female C57 BL/6 mice. Experiments were performed with a cus-
tom-built 50T/m z-gradient and solenoidal RF coil set (4-turn, 3mm i.d.) interfaced to a 9.4T spectrometer/micro-imaging system (Bruker DMX 400 
with Micro2.5 gradients and BAFPA40 amplifiers). A diffusion-weighted stimulated-echo sequence was used: 64×64, SW=25kHz, TR=2s, 
TE/Δ/δ=17.4/10/0.4ms, FOV/THK=4/1mm, and an ambient temperature of 19 °C. The diffusion gradient was applied perpendicular to the SC long 
axis in 64 increments of q (qmax=0.82 μm-1). Normalized q-space decay curves were obtained for each pixel and averaged over ROIs (20 pixels after 
zero-filling image to 256×256) selected within seven WM tracts (Figure 1). After experiments, SC sections from the MRI slice were stained with to-

luidine blue and optical images were obtained from all WM tracts. The 
images were segmented into extra- and intra-axonal, and myelin regions 
with a custom watershed and profile algorithm. MAD was calculated (ex-
cluding myelin) assuming a circular area. Histologic WM tract MADs 
were used to determine the low q regime by only fitting E(q) at q< 
(MAD−1)/10 (the first 11 to 5 q-values for the smallest to largest WM tract 
MAD). All fitting was done with a nonlinear minimization algorithm (inte-
rior-reflective Newton method) in Matlab. When fitting with Eq.2, the fol-
lowing parameter constraints were applied: fE+fI=1 and ZE <8μm (as RMS 
displacement in ECS cannot be larger than that of free water). 

Results 
     Figure 2 shows sample fits of data with Eq. 1 and 2.  The two-
compartment fit has a higher average R2 suggesting that it may be a better 
model. Figure 3 shows a plot of experimental MADs estimated from one- 
and two-compartment fits (Z and ZI, respectively) vs histologic MAD av-
eraged for each WM tract. An outlier ZI value for the FC WM tract was 
removed as it was smaller than the smallest observed MAD. There is ex-
cellent linearity and correlation between histology and experiment; ZI 
from the two-compartment fit shows closer correspondence with histolo-
gy. A Bland-Altman plot between the ZI and histology was generated (not 
shown) and the 95% confidence interval was from –0.11 to 0.24. No sig-
nificant correlation was found between ZE and histologic MAD. The aver-
age ZE was 6.84±1.19μm.  

     The protocol was not optimized for fitting E(q) at low q-values. Using only 5-
11 points for the fits may have introduced errors, especially for the two-
component fit leading to a lower R2 in Fig. 3. Q-Values greater than ~0.1μm−1 
would not be necessary as MAD>>0.8μm. That time could be used to sample 
more points below q=0.1μm−1 or to average the signal in order to improve the 
fitting. Acquiring images only at low q-values is advantageous, because of the 
relaxed gradient amplitude constraints, as mentioned above, and improved SNR 
from less diffusion encoding. 
Conclusion 
     This work demonstrates the feasibility of a two-compartment model to extract 
MAD from low-q echo attenuations that yield results in good agreement with 
histology. 

Figure 3. Plot of average WM tract histologic vs experimental MADs 
(upper curve (diamonds): one-compartment model; lower curve 
(squares): two-compartment model) with equation of line of best fit.  

Figure 2. Sample fits of a nor-
malized signal decay curve 
from dCST WM tract (di-
amonds). Only the first 11 
points were used for fitting 
(solid diamonds) in order to 
fulfill the low q-value condi-
tion. 

Figure 1. Optical image of SC sec-
tion showing WM tract locations: A) 
dorsal corticospinal (dCST), B) gra-
cilis (FG), C) cuneatus (FC), D) ru-
brospinal (RST), E) spinothalamic 
(STT), F) reticulospinal (ReST), G) 
vestibulospinal (VST). 
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