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Introduction 
Sodium MRI has the potential to differentiate viable from non-viable tissue [1]. The in vivo 23Na signal decays biexponentially, with a short component of T2s = 0.5-
8 ms and a long component of T2l = 15-30 ms [2]. Therefore pulse sequences that enable short echo times like 3D Radial Projections Imaging (3D-RAD) [3], 3D-Cones 
acquisition (3D-Cones) [4] and Twisted Projection imaging (TPI) [5] have been used for sodium imaging. Furthermore sodium imaging requires SNR efficient 
acquisition techniques, due to low in vivo concentrations. TPI and 3D-Cones acquisition provide a sampling which is more efficient for the SNR compared to 3D-RAD 
at the cost of limitations in the sequence design parameters and a more complicated gradient switching. We implemented a density adapted 3D Radial sampling scheme 
(DA-3D-RAD) that combines the convenience of the radial trajectory with a more efficient k-space sampling. In this work sodium imaging with 3D-RAD acquisition 
was compared with the DA-3D-RAD acquisition. 

Methods 
A 3D-RAD imaging sequence was implemented as described in [3]. The gradients for the DA-3D-RAD acquisition have a trapezoidal form up to a time t0. After this 
time the gradient amplitude decreases, such that the imaging time for each spherical shell (shells of the same thickness) of k-space is proportional to the shells surface. 
For a 3D radial acquisition the number of k-space samples in a shell with radius k is proportional to the inverse of the gradient strength G(k) and to the inverse of k2 (1). 
The gradients for the DA-3D-RAD acquisition were designed in a way that for a k-space radius k > k0 the number of k-space samples in all spherical shells is kept 
constant, which is equivalent to the constraint (2). Solving equation (2) leads to the form of the gradients (eq. 3; Fig. 1). The resulting radial k-space positions vs. time 
are shown in Fig. 2. Both sequences were implemented on a 3.0 T clinical MR system (Magnetom Tim Trio, Siemens Medical Solutions, Erlangen, Germany). Images 
were acquired using a double-resonant (32.59 MHz/ 123.2 MHz) birdcage coil (Rapid Biomed GmbH, Würzburg, Germany). Image reconstruction was performed 
offline with Matlab (Mathworks, Natick; MA, USA). A Kaiser-Bessel gridding kernel was used [6], followed by a conventional FFT without filtering. In vivo brain 
images, images of a resolution phantom, and images of a spherical phantom were acquired. The switching of the gradients is shown in Fig. 1 (DA-3D-RAD: t0 = 0.5 ms; 
G0 = 8.87 mT/m / 3D-RAD: G0 = 1.11 mT/m). For both sequences the same parameters were used (TE = 0.2 ms; 10 ms readout window; resolution of 4x4x4 mm3; 5000 
projections). SNR measurements were performed in vivo and in phantom images, according to the NEMA definition [7]. The mean signal in selected ROI’s was 
measured in each of the four images from every single repetition. The standard deviation in the ROI’s was calculated from difference images.  
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Fig. 1: Form of the gradients. Fig. 2: Radial k-space position vs. time 

Results 
In vivo images show that the DA-3D-RAD sequence provides a better resolution of fine details (e.g. cerebrum, viscerocranium) and a better SNR (Fig. 3). The 
corresponding SNR/average values are listed in table 1. Fig. 4b (DA-3D-RAD) and Fig. 4c (3D-RAD) show images of a resolution phantom. In the spherical phantom 
SNR values of 9.5 (DA-3D-RAD) and 7.1 (3D-RAD) were measured. Both, phantom and in vivo measurements show a significantly higher SNR for the density adapted 
acquisition scheme (DA-3D-RAD) compared to the standard 3D-RAD sequence. Furthermore the DA-3D-RAD sampling scheme (Fig. 4b) gave a slightly better 
resolution compared to the 3D-RAD acquisition (Fig. 4c).  

 
Fig. 3: slices of 3D 23Na data sets using DA-3D-
RAD (top) and 3D-RAD (bottom). 
(TE/TR = 0.2/60 ms; 4 averages) 

 ROI 1 ROI  2 ROI  3 ROI  4 
DA-3D-RAD 3.9 ± 0.3 4.2 ± 0.2 4.5 ± 0.2 9.60 ± 1.6 

3D-RAD 2.5 ± 0.2 2.8 ± 0.1 3.0 ± 0.2 7.8 ± 2.3 
Ratio 1.6 1.5 1.5 1.2 

Table 1: Comparison of SNR/averaging values in ROI’s shown in Fig. 3. SNR was measured according to 
the NEMA definition [7].  

   
Fig. 4a: resolution phantom; 
sizes of the rods are given in mm 

Fig. 4b: DA-3D-RAD Na-images 
of the resolution phantom 
(TE/TR = 0.2/100 ms; 2 averages) 

Fig. 4c: 3D-RAD Na-images of 
the resolution phantom 
(TE/TR = 0.2/100 ms; 2 averages) 

 

Discussion 
Improved resolution which is achieved with the density adapted sequence can be attributed to a more efficient sampling of the higher k-space frequencies and lower 
image noise. The density adapted gradients have a closed analytical form providing a more flexible sequence design in combination with SNR efficient k-space 
sampling. Therefore in SNR limited applications such as sodium imaging the DA-3D-RAD acquisition is an alternative to 3D-Cones or TPI sampling schemes and 
performs better than the 3D-RAD sequence. 
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