Sodium MRI using a density adapted 3D Radial Acquisition

A. M. Nagel¹, F. B. Laun¹, M-A. Weber², and L. R. Schad³

¹Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany, ²Radiology, German Cancer Research Center, Heidelberg, Germany, ³Computer Assisted Clinical Medicine, Faculty of Medicine Mannheim, University Heidelberg

Introduction

Sodium MRI has the potential to differentiate viable from non-viable tissue [1]. The *in vivo* ²³Na signal decays biexponentially, with a short component of $T_{2s} = 0.5$ -8 ms and a long component of $T_{21} = 15$ -30 ms [2]. Therefore pulse sequences that enable short echo times like 3D Radial Projections Imaging (3D-RAD) [3], 3D-Cones acquisition (3D-Cones) [4] and Twisted Projection imaging (TPI) [5] have been used for sodium imaging. Furthermore sodium imaging requires SNR efficient acquisition techniques, due to low *in vivo* concentrations. TPI and 3D-Cones acquisition provide a sampling which is more efficient for the SNR compared to 3D-RAD at the cost of limitations in the sequence design parameters and a more complicated gradient switching. We implemented a density adapted 3D Radial sampling scheme (DA-3D-RAD) that combines the convenience of the radial trajectory with a more efficient k-space sampling. In this work sodium imaging with 3D-RAD acquisition was compared with the DA-3D-RAD acquisition.

Methods

A 3D-RAD imaging sequence was implemented as described in [3]. The gradients for the DA-3D-RAD acquisition have a trapezoidal form up to a time t_0 . After this time the gradient amplitude decreases, such that the imaging time for each spherical shell (shells of the same thickness) of k-space is proportional to the shells surface. For a 3D radial acquisition the number of k-space samples in a shell with radius k is proportional to the inverse of the gradient strength G(k) and to the inverse of k^2 (1). The gradients for the DA-3D-RAD acquisition were designed in a way that for a k-space radius $k > k_0$ the number of k-space samples in all spherical shells is kept constant, which is equivalent to the constraint (2). Solving equation (2) leads to the form of the gradients (eq. 3; Fig. 1). The resulting radial k-space positions vs. time are shown in Fig. 2. Both sequences were implemented on a 3.0 T clinical MR system (Magnetom Tim Trio, Siemens Medical Solutions, Erlangen, Germany). Images were acquired using a double-resonant (32.59 MHz/ 123.2 MHz) birdcage coil (Rapid Biomed GmbH, Würzburg, Germany). Image reconstruit may be prformed offline with Matlab (Mathworks, Natick; MA, USA). A Kaiser-Bessel gridding kernel was used [6], followed by a conventional FFT without filtering. *In vivo* brain images, images of a resolution phantom, and images of a spherical phantom were acquired. The switching of the gradients is shown in Fig. 1 (DA-3D-RAD: $t_0 = 0.5$ ms; $G_0 = 8.87$ mT/m / 3D-RAD: $G_0 = 1.11$ mT/m). For both sequences the same parameters were used (TE = 0.2 ms; 10 ms readout window; resolution of 4x4x4 mm³; 5000 projections). SNR measurements were performed *in vivo* and in phantom images, according to the NEMA definition [7]. The mean signal in selected ROI's was measured in each of the four images from every single repetition. The standard deviation in the ROI's was calculated from difference images.

Results

In vivo images show that the DA-3D-RAD sequence provides a better resolution of fine details (e.g. cerebrum, viscerocranium) and a better SNR (Fig. 3). The corresponding SNR/average values are listed in table 1. Fig. 4b (DA-3D-RAD) and Fig. 4c (3D-RAD) show images of a resolution phantom. In the spherical phantom SNR values of 9.5 (DA-3D-RAD) and 7.1 (3D-RAD) were measured. Both, phantom and *in vivo* measurements show a significantly higher SNR for the density adapted acquisition scheme (DA-3D-RAD) compared to the standard 3D-RAD sequence. Furthermore the DA-3D-RAD sampling scheme (Fig. 4b) gave a slightly better resolution compared to the 3D-RAD acquisition (Fig. 4c).

Fig. 3: slices of 3D 23 Na data sets using DA-3D-RAD (top) and 3D-RAD (bottom). (TE/TR = 0.2/60 ms; 4 averages)

	ROI 1	ROI 2	ROI 3	ROI 4
DA-3D-RAD	3.9 ± 0.3	4.2 ± 0.2	4.5 ± 0.2	9.60 ± 1.6
3D-RAD	2.5 ± 0.2	2.8 ± 0.1	3.0 ± 0.2	7.8 ± 2.3
Ratio	1.6	1.5	1.5	1.2

Fig. 4a: resolution phantom; sizes of the rods are given in mm

Fig. 4b: DA-3D-RAD Na-images of the resolution phantom (TE/TR = 0.2/100 ms; 2 averages)

Fig. 4c: 3D-RAD Na-images of the resolution phantom (TE/TR = 0.2/100 ms; 2 averages)

Discussion

Improved resolution which is achieved with the density adapted sequence can be attributed to a more efficient sampling of the higher k-space frequencies and lower image noise. The density adapted gradients have a closed analytical form providing a more flexible sequence design in combination with SNR efficient k-space sampling. Therefore in SNR limited applications such as sodium imaging the DA-3D-RAD acquisition is an alternative to 3D-Cones or TPI sampling schemes and performs better than the 3D-RAD sequence.

References

- [1] Kim R.J. et al.; Circulation 95 (1997); 1877-79
- [2] Constantinides et al.; Radiology (2000); 216: 559-568
- [3] Nielles-Vallespin et al.; MRM (2007); 57: 74-81
- [4] Gurney et al.; MRM (2006); 55: 575–582

[5] Boada et al.; MRM (1997); 37: 706-715

- [6] Jackson et al. IEEE Transactions on Medical Imaging; (1991 10(3)); 473-478
- [7] NEMA Standards publication MS 1-2001