In vivo Hyperpolarized ¹³C MRS/MRSI Using ¹³C-lactate as the Pre-polarized Substrate

A. P. Chen¹, J. Kurhanewicz¹, R. Bok¹, D. Xu¹, D. Joun¹, V. Zhang¹, S. J. Nelson¹, R. E. Hurd², and D. B. Vigneron¹

¹Radiology, UCSF, San Francisco, CA, United States, ²GE Healthcare, Menlo Park, CA, United States

Introduction: It has been shown by using ¹³C₁-pyruvate as the substrate for hyperpolarized ¹³C MRS/MRSI experiment, real time cellular metabolism can be studied in normal and diseased tissues in vivo (1-3). These studies have shown the ability to detect the metabolic conversion of the hyperpolarized ¹³C-pyruvate into ¹³C-lactate, ¹³C-alanine and ¹³C-bicarbonate after in vivo injection in animal models. However, if ¹³C-lactate were the hyperpolarized substrate, ¹³C MRS/MRSI could then probe the reverse enzymatic conversion of hyperpolarized ¹³C lactate into the unlabeled pyruvate pool. The goal of this study was to develop a hyperpolarized MR probe based on ¹³C₁-lactate as the substrate for *in vivo* ¹³C

Figure 1. Dynamic MRS data from a normal rat after injection of hyperpolarized ¹³C lactate. Both a stacked plot of individual spectra from each time points (first 25 time points, top right) and a time course graph (bottom left) of the ¹³C lactate, ¹³C alanine and ¹³C pyruvate peak amplitude were shown.

Results: Representative data in Figure 1 shows a stacked plot of dynamic ¹³C data (first 25 time points, each 3 seconds apart) and a graph of the signal amplitude vs time from one of the dynamic studies in healthy rats. Resonances for ¹³C ¹³C lactate, alanine, and ¹³C pyruvate were observed in the spectra (Fig. 1). Pyruvate signal appeared in the spectra prior to alanine signal, and pyruvate time to peak was also earlier compare to that

dynamic MRS study in a healthy rat. In addition to ¹³C lactate, alanine and pyruvate, ¹³C bicarbonate was also observed.

Materials and Methods: <u>Polarization of</u> ¹³<u>C lactate</u>: A HyperSense DNP polarizer (Oxford Instruments, Abingdon, UK) was used in this study. The preparation for pre-polarization developed in this project was a mixture of ¹³C₁-lactate (Isotec, Miamisburg, OH), water, DMSO and OX63 trityl radical (Oxford Instruments, Abingdon, UK). The mixtures contained 38.5% ¹³C-lactate 30% DMSO and the concentration of the trityl was 15mM. A

detected following injection in animal models.

MRS/MRSI studies and to determine if metabolic products could be

normal saline and 100mg/L sodium EDTA solution was used as the dissolution medium. The ¹³C-lactate concentration in the hyperpolarized lactate solution was 44 mM. Polarization levels achieved in these studies were 6.9% - 12.4% (mean 10%).

Hardware, MRS/MRSI, and animals: All studies were performed using a 3T GE Signa[™] scanner (GE Healthcare, Waukesha, WI) and custom built ¹H/¹³C dual-tuned rat/mouse coils. ¹³C dynamic MRS studies were performed in five healthy Sprague-Dawley rats, a C57BL6/FVB male wild type mouse and Transgenic Adenocarcinoma of mouse prostate (TRAMP) mice using a double spin-echo pulse sequence with a non-selective 5 degree flip angle RF excitation pulse and a pair of 180 degree hyperbolic secant refocusing pulses; TE/TR used was 35ms/3s (3-4). 3D ¹³C MRSI data were acquired in both rats and TRAMP mice using a double spin-echo pulse sequence with a slice selective small tip angle excitation pulse and a flyback echo-planar readout trajectory (3-4).

Figure 3. Sagittal T2-weighted FSE image from a TRAMP mouse (left) and the corresponding ¹³C MRSI data (right). Similar levels of ¹³C lactate were observed in regions of tumor compare to voxels containing kidney and liver, while metabolic products of ¹³C pyruvate and ¹³C alanine were only observed in kidney and liver, not in the tumor.

resonance was also observed in the dynamic MRS studies in healthy rats (Fig. 2). In one of the TRAMP mouse studied with late stage tumor (Fig. 3), the 3D MRSI data demonstrated similarly high level of ¹³C lactate in tumor, kidney and liver, while the metabolic product from ¹³C lactate was observed only in liver and kidney voxels.

Discussion: This study demonstrated feasibility of using ${}^{13}C_1$ -lactate as a substrate for pre-polarized MRS and MRSI *in vivo*. Hyperpolarized ${}^{13}C_1$ -lactate MR provides a unique opportunity to study the conversion of lactate to pyruvate *in vivo* and to detect the secondary conversions to alanine and bicarbonate through pyruvate. When applied to a mouse model of prostate cancer, the tumor region demonstrated high lactate uptake but undetectable levels of the metabolic products of ${}^{13}C_1$ pyruvate and ${}^{13}C_1$ alanine. **References:**

1. Golman K et. al. PNAS, 2006; 103(30):11270-11275.

of alanine (7.0s vs 14.4s on average). ¹³C bicarbonate

3. Chen AP et. al. Magn Reson Med, in press.

2. Kohler SJ et. al. Magn Reson Med, 2007;58(1):65-69.

4. Cunningham CH et. al. J Magn Reson. 2007;187(2):357-62.