
Fig. 1: A: PD and B: T2 of a normal brain. C: 
Segmented image: GM, WM and CSF without partial 
volume effect (PVA) correction. D: Segmented 
image: GM (grey), WM (white), CSF (blue), GM-
WM (light grey), GM-CSF (violet) and WM-CSF 
(light blue) with PVA correction. [The color bar on 
right shows grey, white, blue, light grey, violet and 
light blue]. The arrows indicate the significant 
improvement in the tissue classification by 
considering the PVA. 

Fig. 2: Effect of bias field correction at the 
cerebellum of the brain 
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Introduction:  
Classification of brain tissues is important in a number of neurological disorders, such as multiple sclerosis and Alzheimer’s. However, the intensity 

non-uniformity and the partial volume averaging (PVA) within voxels affect tissue classification. An iterative technique based on expectation-maximization 
that includes the bias field correction and PVA is presented for improving the segmentation and volumetric measurements. 
Image Acquisition: 
 MR brain images of 13 healthy volunteers with median age 31 yrs (range: 24-57 yrs) were acquired on a 3T Philips intera scanner with a dual 
quaser gradient system with a SENSE factor of 2. Dual fast spin echo (FSE) images with TE1/TE2/TR = 9.2 ms/90 ms/6800 ms, contiguous and interleaved 3 
mm slices, and matrix 256x256 with a field of view 240 mm x 240 mm were acquired. 
Methods:  

Extrameningeal tissues in the FSE images were removed using in-house developed, semi-automated software followed by bias field correction 
using the module in SPM2 [1]. An anisotropic diffusion filter was applied to minimize the noise while preserving the edges in the images [1]. The whole brain 
was segmented into GM, WM, and CSF iteratively based on the expectation-maximization (EM) procedure along with the bias field correction. In order to 
account for the PVA, we assume L predefined labels into which the whole brain was classified. It was assumed that the observed intensity at voxel i with a 
known class label x follows multivariate Gaussian distribution 
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with parameters θ(xi = j) = {(μj, ∑j), j ∈ L}, where, μj = αμa + (1-α)μb and ∑j = α∑a + (1-α)∑b, α and (1-α) are the fractions corresponding to tissues ‘a’ and 
‘b’ present in class j. The parameters μa, μb, Σa, and Σb represent the mean vectors and covariance matrices corresponding to tissues ‘a’ and ‘b’. In the present 
study, L is 6 (GM, WM, CSF, GM-WM, GM-CSF, WM-CSF) with α = 0, 0.5, or 1. Expectation maximization algorithm was used to estimate the class 
parameters with expectation step calculating the conditional expectation Q(θ|θ(m)) = E[log p(y, x|θ)|y, θ(m)] and maximization step for maximizing the function 
Q(θ|θ(m)). The estimated class parameters were obtained as θ(m+1) = arg maxθ Q(θ|θ(m)). A Markov 
Random Field (MRF) model was used for the class labels with prior probability p(x) = exp(-U(x))/Z, 
where Z is a normalizing constant [2]. Class labels were estimated using a maximum a posteriori 
principle, x′ = arg maxx p(y|x)p(x). In the presence of bias field, for a known class label x, it is 
assumed that the observed intensity yi at voxel i follows the Gaussian distribution. Bias field was 
modeled as a linear combination of polynomials [3]. 
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The probability density of an observed intensity can be written as  
( | , ) ( ( )) ( ).
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The coefficients ck were obtained by maximizing the likelihood function ∏i p(yi|θj,bi), which was 
obtained by taking partial derivative of -Σi log p(yi|θj,bi) with respect to ck and equating it to zero, 
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The class parameters, class labels, and coefficients of polynomials were estimated iteratively based 
on EM algorithm until the mean square error of mean vectors of tissue classes at consecutive 
iterations is minimized. 
Results and Discussion:  

Figure 1 shows the short echo FSE (proton density or PD) (A), long echo FSE or T2 (B) 
images, segmented images without (C) and with (D) the inclusion of PVA correction. The three 
mixed tissue classes, GM-WM, GM-CSF, and WM-CSF were included in classification. An 
important conclusion of these studies is the need to perform bias field correction twice (SPM2 and 
interleaved correction as a part of EM algorithm). This is demonstrated in Fig. 2 at the cerebellar level 
of the brain. Segmentation without any bias field correction resulted in poor tissue classification (Fig. 
2C) which was further improved either by the application of SPM2 or interleaved intensity correction 
(Figs. 2D and 2E). Inclusion of both SPM2 and interleaved bias field correction remarkably improved 
the classification of tissues (Fig. 2F). Presumably the interleaved correction does a better job in 
reducing the in-plane inhomogeneity compared to SPM2 which is a 3D correction method. This is 
consistent with earlier report that suggests that the in-plane intensity inhomogeneity is important 
when images are acquired in an interleaved fashion [4] as is the case in the current studies.  
Conclusions:  

We have presented a method for improving the segmentation of tissue with intensity non-
uniformity correction and including partial volume averaging effect. This method results in more 
accurate tissue segmentation. These studies also suggest the importance of in-plane bias field 
correction. 
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