
Introduction: HYPR (HighlY constrained backPRojection) has previously been proposed by Mistretta et al. [1] as a non-iterative image reconstruction 
method for time-resolved MRA and has evolved ever since to tackle a multitude of reconstruction problems including less sparse data, such as those ob-
tained with perfusion or diffusion imaging [7, 6]. The HYPR algorithm, however, exhibits an inherent inconsistency between the acquired projection data 
and the HYPR-synthesized projection data. To minimize this inconsistency Griswold et al. [2] recently proposed a Conjugate Gradients (CG) approach. 
Although self-regularizing, the CG method exhibits inherent instability in ill-posed problems which requires further regularization methods. A simple 
approach to stabilize the solution is Tikhonov regularization [8]. Tikhonov regularization has previously been proposed not only for MRI but also for 
backprojection-data, such as obtained with PET and CT [3, 4]. In extension to the work of Griswold [2] and Older [5], we put the backprojection recon-
struction into a matrix formalism framework. The matrix formalism helps better understand HYPR and its variant, CG-HYPR. Moreover, it allows one to 
incorporate regularization techniques as demonstrated in this work by including Tikhonov regularization. 
 
Material and Methods: Note that the HYPR reconstruction is linear and can thus be expressed as a sequence of matrix operations as follows:  
 HYPR = C * RH * Pc, [1] 
Pc is diag{1/Pc(i,k),(i,k)} with the elements Pc(i,k),(i,k) being the kth element of the ith projection of the composite image. Furthermore, RH is the backprojec-
tion operator and corresponds to the Hermitian of the Radon Transform matrix, and C is the composite operator and is expressed as diag{Compositej,j} 
with Compositejj being the jth element of the composite image. This formalism is illustrated in Fig. 1.  
The Hermitian of the HYPR-operator is then given by: 
 HYPRH = PcH * R * CH. [2] 
As proposed in [2], CG-HYPR minimizes data inconsistencies seen in regular HYPR by minimizing the norm ||R*HYPR(Pi) - Pi||2, where R denotes the 
Radon Transform applied to the HYPR image. The augmented CG algorithm in matrix form is illustrated in Fig. 2. 

 
With the presented framework it is possi-
ble to incorporate any kind of regulariza-
tion technique into the CG-HYPR algo-
rithm. For example, introducing the norm 
of the reconstructed projections, ||x||2, as 
an additional penalty term, the minimiza-
tion problem can be recast as follows: 
min { ||R * HYPR(xi) - Pi||2 + α||Bxi||2 }. 
B is an arbitrary matrix and α is an arbi-
trary, positive scalar that controls for the 
amount of regularization. The setting of α 
was done manually but if needed can be 
done in an automated yet more computa-
tionally intense mechanism by L-curve or 
crossvalidation. Ultimately, solving for x 
yields 

 xs = ( HYPRH * RH * R * HYPR(xi) + αBH * B)-1 * HYPRH * RH * Pi  [3] 

which can be done with the CG method. 
Simulations have been performed in Matlab using a software phantom with simple structure whose intensity varies over time and basically resembles a first 
pass plus recirculation of contrast agent within arteries and (with time delay) veins. Parameters were chosen as follows: α = 0.001, B =  Identity, N = 256, 
35 timepoints, 30 projections per timepoint and 10 CG iteration steps for each timepoint. 

 
Figure 3 – A comparison between HYPR, common filtered backprojection (Iradon), CG-HYPR and the proposed method (Regularized CG HYPR). The main advantage of 
the proposed method is in the convergence behavior of the CG, which is stable. It also inherits HYPR’s ability to suppress streak artifacts common in inverse Radon reconstruc-
tions. Without regularization, CG diverges and yields unacceptable results. 
 
Results: The proposed method stabilizes CG-HYPR and exhibits faster convergence (3-6 iterations). Tikhonov Regularization makes CG-HYPR practica-
ble due to its stable residual behavior. As shown in Fig. 3, CG-HYPR yields unacceptable results if not stopped in one of the few converged states. Like 
CG-HYPR, the proposed method eliminates streak artifacts seen in filtered backprojection reconstruction and enhances temporal resolution.  
 
Discussion: The proposed matrix formalism allows incorporating regularization techniques into CG-HYPR. A key issue is finding the correct regulariza-
tion parameter α which requires further investigation. Regularization techniques may also drive down the minimum of the residual function, 
thus increasing image quality. 
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Figure 1 - Matrix representation of HYPR. Pi represents the 
acquired data for the current timeframe, backprojection is the 
transpose of the Radon Transform, and pixel-by-pixel multiplica-
tions are represented as diagonal matrices. Np denotes the total 
number of projection samples, N

2
 is the number of pixels in the 

HYPR image. 

Figure 2 - Block diagram of the CG method used to 
minimize data inconsistency in HYPR. The CG 
algorithm iteratively updates our initial guess x0 by 
computing a correction image from the residual 
vector. 
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