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Figure 1.  Example partial k-space reconstructions.  
(a-b) show a fully-sampled phantom image and an en-
largement of the region highlighted in green.  (c-h) 
show images that have been undersampled by 78% 
(random phase encoding) and reconstructed by (c-d) 
zero-filling, (e-f) L1-minimization, and (g-h) homotopic 
L0-minimization.   
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Introduction  Compressed or Compressive Sensing (CS) [1,2,3] and related L1-minimization 
techniques [4,5,6] can accurately and efficiently reconstruct sparse or compressible magnetic 
resonance images (MRI) even at sampling rates far below the Nyquist limit.  Although L1-based 
formulations of the partial k-space recovery problem have the advantage of convexity and thus 
a readily-achievable global minima, they inherently require the image to be modestly oversam-
pled above the theoretical minimum sampling rate to assure their efficacy [7].  In this work, we 
introduce an alternative reconstruction paradigm based on homotopic L0 semi-norm minimiza-
tion which asymptotically diminishes this oversampling factor and allows for MR images to be 
reconstructed from even fewer samples than are necessary for L1-based methods.   
 

Theory  Let f be an MR image of interest and define Φ as a Fourier undersampling operator 
(e.g. Cartesian random phase encoder [8]).  Additionally, let Ψ represent a sparsifying transfor-
mation such as a wavelet or differential operator.  Ideally, a signal possessing a K-sparse repre-
sentation can be recovered from as few as 2K random samples in some incoherent domain by 
solving the so-called L0-minimization problem,  
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where 1(|·|>0) denotes the indicator function.  Unfortunately, this problem is NP-complete and, 
as 1 possesses a zero gradient almost everywhere (a.e.), even local minima cannot be readily 
computed.  The L1-minimization problem is obtained by relaxing 1 to the modulus function, and 
this formulation generally necessitates acquisition of at least 3K-5K measurements to ensure 
that an accurate reconstruction is achievable [7].  Alternatively, consider 
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where ρ denotes a dynamic concave semimetric (e.g. the Laplace error function or Lp semi-norm 
class for 0<p<1) that is homotopic with, or can be continuously deformed into, 1 as σ→0.  Cor-
respondingly, as σ is diminished and ρ provides an increasingly better approximation of 1, the 
oversampling factor above the 2K limit is also progressively reduced [9,10].  While similar 
mathematical approaches have been applied to the shape-from-shading problem in computer 
vision [11] and for Bayesian tomography [12], the authors believe this to be both the first appli-
cation of homotopic approximation to the CS problem as well as to MRI reconstruction. 
 

Methods  Although (2) is highly non-convex and thus exhibits no guarantee of a practically-
achievable global minima, ρ, unlike 1, possesses a non-zero gradient a.e. and thus standard 
descent methods readily admit local minima.  Furthermore, combination of a robust numerical 
solver such as a half-quadratic (HQ) or fixed-point iteration (FPI) [10,13] in conjunction with a 
standard continuation scheme for reduction of σ [14] generally yields local minima which are 
visually superior to the global results obtained by L1-minimization.  Note that both separate real 
and imaginary [5] or magnitude and phase regularizations [15] are possible. 
 

Example  An example juxtaposition of L1 and homotopic L0-minimization for sparse MRI 
reconstruction is shown in Figure 1.  The shown MRI phantom was retrospectively undersam-
pled by 78% via a Cartesian random phase encode mask [8] and both solutions were computed 
using the aforementioned FPI numerical scheme with a gradient sparsity operator.  In both 
cases, < 30 outer iterations of the FPI scheme were required yielding a Matlab© reconstruction 
time of ~2 min on a standard desktop PC (3GHz Pentium IV w/ 1GB memory) for the 256x256 
example which is comparable to the results presented in [3-6,8].  While both L1 and homotopic 
L0-minimization provide a marked improvement over the zero-filled reconstruction, note the 
superiority of the proposed method in terms of both overall contrast and intensity uniformity as 
well morphological detail as highlighted in the enlargements images.  Comparable results have 
been obtained for other image types as well as with alternative sampling patterns.   
 

Discussion  In this work, we have proposed a novel technique for sparse MRI reconstruction 
from highly-undersampled k-space data that allows for accurate reconstructions to be achieved 
at sampling rates even lower than are required by L1-based techniques.  For specialized imaging 
applications such as time-resolved [16] and parallel imaging [6] where the superiority of L1-
based methods over conventional linear techniques has already been demonstrated, homotopic 
L0-minimization may allow for even greater reduction of scan time. 
 
 

References 
[1] E. Candès et al., IEEE TIT 52(2): 489-509, 2006  [2] D. Donoho, IEEE TIT 52(4): 1289-
1306, 2006  [3] M. Lustig et al., Proc. ISMRM: 605, 2005  [4] J. Ye et al., MRM 57:764-775, 
2007  [5] L. He et al., UCLA CAM 06-25, 2006.  [6] K. Block et al., MRM 57: 1086-1098, 2007  [7] E. Candès et al., CPAM 59: 1207-1223, 2006  [8] M. Lustig et al., 
Proc. ISMRM: 695, 2006  [9] R. Chartrand, IEEE SPL 14(10): 707-710, 2007  [10] anonymous  [11] A. Blake and A. Zisserman, Visual Reconstruction  [12] D. Yu and 
J. Fessler, IEEE TMI 21(2): 159-173, 2002  [13] C. Vogel, Computational Methods for Inverse Problems  [14] T. Chan et al., UCLA CAM 95-28, 1995  [15] J. Fessler 
and D. Noll, Proc. IEEE ISBI: 209-212, 2004  [16] M. Lustig et al., Proc. ISMRM: 2420, 2006 

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008) 3155


