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INTRODUCTION:  
Since the advent of compressed Sensing (CS) (1), much effort has been made to apply this new concept to various applications (2,3).The 
most desirable property of CS in MRI application is that it allows sampling of k-space well below Nyquist sampling rate, while still being 
able to reconstruct the image if certain conditions are satisfied. Recent work (4,5) applied CS to reduce scanning time in conventional 
Fourier imaging and demonstrated impressive results. In this abstract, we investigate the structure of parallel imaging encoding matrix, and 
apply CS to parallel imaging to achieve an even higher reduction in scanning time than what can be achieved by each individual method 
alone. Our experiments show the the combined method, named SparseSENSE, can achieve a reduction factor higher than the number of 
channels.  
  
THEORY 
In CS theory, a signal x with a sparse representation in the basisΨ , can be recovered from the compressive measurements Φxy =  [1], if 
the Φ  and Ψ  are incoherent (6). In MRI, incoherence is satisfied when Ψ is the identity matrix (or the finer scales of a wavelet 
transform) and Φ  is a random subset of rows from the discrete Fourier matrix (6). However, this random sampling of k-space in all 
dimensions is generally impractical as the k-space trajectories have to be relatively smooth due to hardware and physical considerations (5). 
Instead, Lustig et al (4,5) designed practical incoherent sampling scheme for conventional Fourier imaging which randomly undersamples 
Cartesian grid along the phase-encoding directions only and fully samples the readouts. In parallel imaging, the measurement matrix (i.e. 
sensitivity encoding matrix) Φ  is equivalent to a block Toeplitz matrix multiplied with a discrete Fourier matrix, where the elements of 
Toeplitz matrix are the Fourier transform of coil sensitivities. We have shown that if there is randomness in the Toeplitz matrix, Φ  is 
incoherent with most sparse basis such as wavelet. The degree of randomness in the Toeplitz matrix affects the required number of samples. 
Although random sensitivity profiles is a better option, random Cartesian sampling along phase encoding direction is more practical and 
easier to implement without modification of hardware. We use the same sampling strategy as (5). Specifically, we choose samples randomly 
with sampling density scaling according to a power of distance from the origin, because most of the energy of images is concentrated close 
to the k-space origin. The image is reconstructed from the undersampled k-space data acquired from an array of coils by solving the 

nonlinear optimization problem: minimize 
1

Ψx  subject to 
2

Φx - y ε<  [2], where x is the desired image, y is the downsampled k-space 

data, and Φ  is the sensitivity encoding matrix (7) and ε  is a small constant to control the fidelity of the reconstructed result to the 
measured data.  
METHOD AND RESULTS 
Phantom data were collected on a Hitachi Airis Elite (Kashiwa, Chiba, Japan) 0.3T permanent magnet scanner with a four-channel head coil 
and a single slice spin echo sequence (TE/TR = 40/1000ms, 8.4KHZ bw, 256*256 matrix size, FOV = 220 mm2). 52 out of 256 k-space 
lines in phase-encoding direction are randomly picked to simulate a reduction factor 5. The sampling pattern is shown in Fig 1(d). Due to 
the piecewise smooth feature of the phantom, total variation (TV) was used for the sparse representation. The minimization in Eq. [2] was 
solved using the lagged diffusivity fix-point numerical algorithm (8), implemented in MATLAB (Mathworks, MA).  Figure 1 (a) shows the 
sum-of-square reconstruction from the fully sampled data as a reference for comparison, and (b) shows the reconstruction from the 
proposed SparseSENSE after 90 iterations, and (c) shows the result from SENSE (7). The SparseSENSE reconstruction shows only very 
few discernable artifacts compared to the reference. 
     
 
 
 
 
 
  
 
 
 
 
            Fig.1 (a) Gold Standard        (b) SparseSENSE              (c) CG Method           (d) Sampling Pattern  
 
DISCUSSION AND CONCLUSION: 
We apply CS to parallel MRI to achieve a reduction factor higher than the number of channels. The phantom experiments show promising 
results. The proposed reconstruction algorithm is computationally intensive, with a running time of 45 minutes for the phantom data on a 
2.8GHz CPU/512MB RAM PC. Future work will test on real data with sparse representations such as angiography and investigate optimal 
sampling schemes.                                                                                                                                
REFERENCES: 
[1] Candes E, et al, IEEE TIT., 52: 489-509, 2006. [2] Wakin M et al. ICIP, 2006. [3] Tropp J, et al. ICASSP, 2006. [4] Lustig M, et al. 
ISMRM, p.685, 2005 [5] Lustig M, et al. Preprint, 2007. [6] Candès EJ, et al, Inverse Problems, 23: 969-985, 2007 [7] Pruessmann KP, et 
al. MRM 46:636-651, 2001 [8] Vogel C, SIAM press, 2002.  

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008) 3154


