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Introduction:  There has always been interest in speeding the acquisition of MRI data by acquiring fewer data in k-space.  Recently there has been a significant interest 
in applying inverse problem techniques to reconstructing images from undersampled k-space MRI data [1-6].  One class of methods, from the nascent field of 
compressed sensing, is based on the sparse representation of images.  As an example of this approach, an image from incomplete k-space data is reconstructed by using 
a non-linear recovery scheme in which a spatial Total Variation (TV) constraint is applied on the estimated solution while preserving fidelity to the acquired data in k-
space [1-3].  The method is best known to reconstruct piecewise constant data from its incomplete Fourier samples.  Since most MR images are not exactly piecewise 
constant, the application of the method directly to undersampled MR image reconstruction is limited in terms of the quality of the reconstruction and accelerations that 
can be achieved.  Here, we propose to use a data reordering technique to make the method more widely applicable to reconstructions in which the data do not perfectly 
match the constraints being used.   
 

Methods:  When full Fourier data of a signal are not available, reconstruction can be done by solving a convex optimization problem in which a cost function is 
minimized.  The cost function consists of a fidelity term in which data fidelity is preserved at the locations where the data are sampled while minimizing a TV 
constraint.  When the signal of interest is varying rapidly and is not smooth, the total variation of the signal is already high and hence reconstruction from incomplete 
Fourier data by minimizing the cost function is inaccurate.  In the data reordering technique the undersampled data are reordered in the signal space according to an a 
priori determined ordering and then appropriate constraints are applied within an iterative reconstruction. Reordering the data can lead to lower total variation and 
sparser representations of the data in terms of finite differences and hence better reconstructions from the undersampled data can be obtained.  Consider Fig 1 which 
shows a randomly varying signal and the corresponding curve sorted based on its intensities.  The sorted curve is monotonic, smoothly varying and has lower TV as 
compared to the original curve.  Hence reconstruction from incomplete k-space data is performed by minimizing the cost function C as shown below with reordering in 
the constraint term. 
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In the above equation 2. is the L2 norm, 1. is the L1 norm, d% is the undersampled data acquired in k space, W is binary undersampling matrix, F is the Fourier 

transforms, m% is the estimated true signal, rm% is reordered m% , ∇ is gradient operator, ε is a small positive constant and α is the weighting factor for the constraint 

term.  The method can be extended to 2D and multi-image data acquisition cases in MR by performing reordering in the constraint terms in the corresponding 
dimensions.  Since the data we deal with in MRI is complex, reordering can be done independently for each pixel and the real and imaginary parts of the data. 
  

Results:  Fig 2 shows the results of reconstruction of the signal in Fig 1 from 50% of its full Fourier data.  Fig 2a shows the original signal, the signal reconstructed 
from its undersampled Fourier data without reordering and the corresponding reconstructed signal with reordering.  The sorting order of the full signal was used for 
reordering the undersampled signal.  The reconstructed signal with reordering matches closely with the original signal.  In practice it might not be possible to know 
beforehand the exact ordering as that obtained using full data.  To simulate this case, the exact sorting order is randomly perturbed to see the effect of having inexact 
ordering on the performance of the algorithm.  The degradation in the performance of the algorithm is more gradual rather than sudden when the accurate ordering is 
not known. Fig 2b illustrates the point.  In the plot the x-axis represents the number of random perturbations i.e., number of indices of the exact 'sorting order vector' 
that are randomly perturbed.  A value of 10 on the x-axis means that the values of the exact 'sorting order vector' at 10 distinct randomly picked indices (out of 70) are 
exchanged with those at a second set of 10 distinct randomly picked indices.  The y-axis represents the log value of the total absolute difference between original full 
data and the reconstructed signal.  We can see that as the number of random perturbations increases the total absolute error using reordering gradually increases, but is 
still better or comparable to that without the data reordering except for a few perturbations towards the end of the plot where the entire sorting order vector was 
randomly perturbed.  

Fig 3 shows an example of a multi-image data reconstruction with reordering in space (x and y dimensions) and multi-image dimensions.  Fourier data was 
generated from the magnitude DTI image data of a brain slice with different diffusion encoding directions (data provided by A. Alexander, U. Wisc.).  Fig 3a shows the 
image of a single diffusion encoding direction reconstructed from full Fourier data using Inverse Fourier Transform (IFT).  Fig 3b shows the reconstructed image from 
R~3 Fourier data (undersampled in variable density (VD) random fashion) with TV constraints in multi-image and space dimensions but with no reordering and Fig 3c 
shows the corresponding reconstructed image with reordering.  Reordering in this case was done in two steps.  In the first step the central low resolution data from VD 
undersampling was used for reordering the data in multi-image dimension only and reconstruction was performed.  The resulting data were then used to determine the 
spatial ordering and final reconstruction was performed with reordering in the spatial and multi-image dimensions.  We can see that Fig 3c matches Fig 3a better 
especially around the ventricles. 

 

Discussion and Conclusion:  Methods for obtaining optimal ordering of the data depend on the application, for example the central low resolution data that can 
obtained from variable density undersampling can be used to reorder the data in the multi-image dimension.  In conclusion using data reordering in the constraint terms 
can improve reconstruction from undersampled data when the constraints do not directly match the data to be reconstructed. 
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Fig 2.  (a)  Original signal and the reconstructed signals 
from R~2 Fourier data without and with reordering.  (b) 
Plot comparing reconstruction errors without reordering 
and with reordering as a function of inaccuracies in exact 
ordering. 

Fig 3.  (a) Image of a diffusion encoding direction reconstructed 
using IFT from full Fourier data.  (b) Image reconstructed from 
R~3 Fourier data without reordering.  (c) Corresponding image 
reconstructed from R~3 Fourier data with reordering. 

Fig 1.  A randomly 
varying signal and its 
corresponding sorted 
signal. 

Proc. Intl. Soc. Mag. Reson. Med. 16 (2008) 3153


